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ABSTRACT

In salvo firing, the smallest ballistic dispersion is

* .not always most desirable. Deliberate increase of the

ballistic dispersion can improve the probability of des-

troying the target. Our concern in this dissertation is

the optimization of such "artificial" dispersion in two-

dimensional salvo models. In some cases no closed form

solution is available, but we are able to offer efficient

methods for the computation or approximation of the salvo

kill probability. In other cases we are able to derive

approximate formulae for the optimal ballistic dispersion.
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I. INTRODUCTION

Let us begin with a classical example presented in Chap-

ter 6 of the textbook by Morse and Kimball [Ref. 1]. Suppose

an airplane carries two bombs to attack a railroad track.

The plane flies along a course perpendicular to the track,

* -. and drops the bombs. There are three ways to drop two

bombs: (1) together in salvo, (2) spaced a suitable distance

apart aiming the midpoint of the pattern at the center of

the track, and (3) dropping each on a separate run over the

*target.

We intend to illustrate the method of calculating the

probability of track destruction in the three cases, the

purpose being to determine which method of attack is the

best.

Let us consider Case (1), salvo bombing. The two bombs

leaving the plane simultaneously will hit the ground at some

distance apart; the impact point being random. For the time

being the random vector of the impact position from the

center of impact is termed the ballistic error. The aiming

is also not free from error. The plane aims at a point on

the center of the track, but the center of impact will

deviate from the aim point. This deviation, or aiming error,

is also random. The impact point of each bomb is, there-

fore, composed of two errors; first the aiming error which

% 4
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is connon to both bombs, and second the ballistic error

which varies from one bomb to another.

If the variance of the ballistic error is small while

that of the aiming error is large, the two bombs will land

almost at the same point. Therefore it is expected that

either both will hit or neither will hit the track. To avoid

the latter situation and to improve the probability of des-

truction, it is better to spread the landing pattern of the

bombs. One way is the method of pattern bombing described

as Case (2), another is salvo bombing employing bombs

with a suitable value of variance of the ballistic error.

Our main concern in this dissertation is maximization of the

probability of salvo destruction by choosing a suitable

value of the variance of the ballistic error. In the follow-

ing we call it the optimal ballistic dispersion.

The problem described above is not a new one. In an

interesting talk before a conference at the Ballistic Re-

search Laboratories held in March 1955 IRef. 2], Merritt

and King stated that an approximate formula for the optimal

ballistic dispersion was derived by two Englishmen as early

as in 1936. Following the work in WW II, a number of arti-

cles were published on both the salvo and pattern firing

models, but since the early 1970's, it seems that these

models have attracted less attention. Further detail can be

found in two excellent review papers by Eckler [Ref. 3] and

Eckler and Burr [Ref. 4]. However, little is known as to the

7



optimization of the ballistic dispersion in salvo models.

It is the calculation or approximation of the optimal

ballistic dispersion that is the subject of this dissertation.

A. SALVO FIRING

In the following chapters we deal with only two-dimensional

salvo models. The reason we adopt the two-dimensional model

is that it is the most frequent case and plays an important

role in real world applications. One- or three-dimensional

theory can also be developed to parallel our investigation.

Suppose that there is a target in a two-dimensional space,

and a salvo of n weapons is delivered against the target.

Delivery error relative to the target is assumed to be com-

posed of two parts, the aiming error and the ballistic error.

First we aim at the target. With this aiming, the center

of impact point of n weapons is determined. Let us adopt a

Cartesian coordinate system (.x,yl such that the origin coin-

cides with the center of impact. The aiming cannot be per-

fect. Let the components of the aiming error be -U and -V.

Then the position of the target with respect to our coordinate

system is given by (U,V). It is assumed that the joint

probability density of U and V exists and is given by f 1 (u,v).

Now, a salvo of n weapons is fired against the target

after (U,V) takes a value (u,v) which is unknown to us and

only is predictable in a probabilistic sense. The components

of the impact point of the ith weapon are denoted as Xi and1
Y." It is assumed that (Xi,Y i) are independent and identically

8
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distributed random variables with joint density f2 (x,y).

In Fig. 1, a typical geometry is shown. The target is at

(u,v), and the impact points of four weapons are scattered

around the origin.

As to the target we adopt the so-called point target

concept: It is assumed that the target is either completely

destroyed or else undamaged by each weapon. We neglect any

possible partial damage and its cumulative effect. The

probability that a weapon landing at (x,y) destroys the tar-

get at (u,v) is a function of u-x and v-y, denoted as

D(u-x,v-y) and is called the damage function.

The probability of destroying the target is calculated

in two steps. First, suppose that the random variables

U and V take some values u and v. The conditional proba-

bility that the ith weapon destroys the target given U = v

and V = v is

p(u,v) = f f D(u-x,v-y)f2 (x,y)dxdy . (1.11

The impact points X. and Y. are all assumed to be independent,
1 1

so the conditional survival probability of the target given

n
U = u and V = v is {1 - p(u,v)}n. Therefore, we obtain the

probability that the target is destroyed by the salvo of n

weapons--salvo kill probability--by averaging the conditional

survival probability with respect to the distribution of u

P 9
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and v, and then subtracting it from unity:

p = 1- f f {l - p(u,v)}nf (u,v)dudv . (1.2)
-CO -00

B. UPPER BOUND ON THE SALVO KILL PROBABILITY

In the example mentioned earlier, Morse and Kimball ob-

served that the probability of destroying the track by drop-

ping two bombs in salvo is always smaller than the destruc-

tion probability of Case (3), namely the case in which

the two bombs are dropped independently on separate passes.

Similar observations are also pointed out in the review paper

by Eckler and Burr. The observation is valuable, but there

has been no proof given to this fundamental property dis-

. covered numerically. Indeed, we have the following proposi-

tion without any specific assumptions on fl(uv), f2 (x,y)

and D(x,y).

Proposition 1.1

Let the salvo kill probability with n weapons be denoted

as Pn

0 o

Pn = 1 - 0 f {i - p(u,v)}nfl(u,v)dudv . (1.3)

Then,

hi
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r.-F.s-..i''-Pn <  1 - (1 -P1) n .(1.4)

Namely, salvo P is always smaller than the kill probability

of n independent tries.

Proof

The proof is immediate from a theorem in the book by

Hardy and others [Ref. 5]. Define a mean Mr of a non-negative

function g(x) for a positive r as,

Mr (g) = f f grf dx}I/r,

where f = f(x) is a weighting function, positive everywhere

and,

f f dx = 1

-Theorem 192 from Ref. 5 tells us that if 0 < r < s and

Ms (g) is finite, then

Mr < Ms

unless g(x) is a constant.

The weighting function f corresponds to fl(u,vl in our

proposition, and g corresponds to our 1-p(u,v). Therefore,

for n > 1, we have

12
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Ml (l-p) < Mn (1-p)
mn

or

€ {M1 (l-p) }n  < M}n-)

which means

(l-Pln < 1 -P n LI

Here is an outline of the succeeding chapters: In Chap-

ter II, we investigate the simplest salvo model which is

characterized by circular normal errors and circular Gaussian

damage function. After that, an approximate formula for the

optimal ballistic dispersion is introduced in Chapter III;

we regard the material in Chapter III as the "core" of this

dissertation. In Chapter IV, the approximate formula is

- applied to the salvo model of Chapter II, and its accuracy

is studied. In Chapter V, an approximate method of calcu-

lating the salvo kill probability of the salvo model with

the general damage function is presented; this case is more

difficult than the one where the damage function is circular

normal, so we resort to further approximations. In Chapter

VI, we investigate the salvo model with the so-called cookie

cutter damage function, relying heavily on the results of

Chapters III and V. Finally, salvo model without circular

symmetry is discussed in Chapter VII. Our concern throughout

13
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is the optimization of artificial dispersion. In some cases

no closed form solution is available, so we offer efficient

methods for the computation or approximation of salvo kill

probability with a given dispersion. In other cases we are

able to offer closed form solutions.

.t . . %.

.pot.:

% .t..

Z.v"-

4-;14

-'. ; 1f

.*, *. -".,..,,,,,. .,,. : .% . . . ..- . . * S *.... .... ... . . .
", -""*,'','"' " ,' . - - ,"- .,''.* '.. '.''. "-,,".,'"".p. "-. '''.-,V'"" ".S'" " ":'"". . ,,V-V -. -",:



"" II. SIMPLE SALVO MODEL

In this chapter we deal with the simplest salvo model

with circular normal errors and a circularly symmetric

Gaussian damage function.

Let us adopt a Cartesian coordinate system (x,y) the

origin of which coincides with the center of impact of the

n weapons. The target position with respect to this coor-

dinate system is denoted as U and V in the x and y direction,

respectively. (U,V) is a random bias common to all the n

weapons. In this chapter (U,V) is assumed as a circular normal

variate; namely, we assume that U and V are independent and

identically distributed normal random variables with mean 0

2
and variance a1. The joint density of U and V is, therefore

2

fl(u,v) = e 2 (2.1)
27ra 1

Z 1w ,The impact point of the ith weapon is denoted as (Xi,Y i ) .

It is assumed that (Xi,Yi), i = 1,2,...,n are independent and

identically distributed circular normal random variables

with joint density function

.'. 2 22

f (x, y) = 1 e (2.2)

-O-N

2rro2
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As to the damage function, we assume that the so-called

Gaussian damage function with circular symmetry: If the

target is at (u,v) and a weapon impacts at (x,y), then the

destruction probability is given by

(u-x) 2+(v-y) 2

D(u-x,v-y) = e 2a (2.3)

In the following, let us call this model the Simple Salvo

Mode 1.

According to Grubbs [Ref. 6], the Simple Salvo Model was

first studied as early as in 1953 by H. K. Weiss in BRL Re-

port No. 879, "Methods for Computing the Effectiveness of

Area Weapons." The formula for the salvo kill probability

(2.7) given in the next section is attributed to him. Later,

Breaux [Ref. 7] found that this formula was not suitable for

computation when n is large, and gave another method of com-

putation. However, it seems that there is no published re-
.%- ,

search investigating this model in full depth; the studies

usually come to an end when expressions for the kill proba-

bility are derived. In this chapter, we investigate first
... •

the property of the kill probability as a function of param-

eters involved in the model. Methods for computing the kill

probability and bounds for the kill probability are also

dealt with in the later sections.

16



IN .

A. SALVO KILL PROBABILITY AS A FUNCTION OF n, ol G2, AND a

The salvo kill probability is derived in two steps as

0is stated in Chapter I. First the conditional kill proba-

bility by the ith weapon is calculated given that the random

-bias (U,V) takes a value (u,v).

p(uv) = f - D(u-x,v-y)f2 (x,y)dxdy . (1.1)
...- -

The salvo kill probability is then obtained by averaging

1 -{lp(uv)}n over the distribution of (U,V), as

p = 1 - f f {l-p(Uv)Inf1 (u,v)dudv .(1.2)

Using the assumptions (2.2) and (2.3), we easily calcu-

late the conditional kill probability (1.1)

.:.> _(u-x) 2+(v-¥1 2x _2+2

';"-p (u, v) f f e o2dd22

"'-'.'.and get

'.._ u2 v

-a. +V
" -. .2 2 (a + a 2p&(uv) = e 2 (2.4)

+ a 2

17
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Substituting (2.1) and (2.4) into (1.2), the salvo kill

probability is

::u 2 +v2  2 2
® 2 2(a 2+2 2

P f a-2--- - - e e dudv
27r0 a 0 +0 2

,'°..

* .2

K:.. Conversion from Cartesian coordinates into polar coordinates

gives

2 2r 2 r
. 1 2 2(a +a2) n 2a

P = 1 - j { - ----- e } e rdr.
a' . 0I a + 2

From this we get

,'; A e-t/p) ne-td
P 1 - 1 - - ) edt (2.5)

S 0 p

where

~22 = 2 2 2(26"-a la /i P (a +0 )/a (2.6)

S'.

There are 4 parameters in our model, but the salvo kill

probability is determined by three, n, a1//a, and o2/a, or

n, A, and p as is seen in (2.5).

If the integrand in (2.5) is expanded in a binomial

series and integrated term by term, we obtain the Weiss

18
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formula for the salvo kill probability.

nn

e A~ P F (-l)Jl() (1)J1P(27
Vj=l p 27

P is obviously an increasing function of n, and is de-

creasing in al/a . The latter is easily verified by in-.ze 2 2

specting (2.5), where X/p is constant for fixed a2/CL. The
222

a a2/a -dependence is, however, not obvious. In (2.5), A is222

constant for a fixed value of , and there are two factors

which involve p in the integrand, with p tending to increase

P in one and to decrease P in the other.

Table 1 and Table 2 are given here to show the -/ 2 and

.2  _/a dependence of the salvo kill probability, where n is

kept constant, n = 2 for Table 1 and n = 16 for Table 2. For

2-2 2 2
fixed n and a , P is decreasing in a /a as mentioned

22_above. However, the a2/a dependence is a little different.
in22

It is observed that, generally, P is decreasing in a 2/a 2 for

2 2 2 2small values of a /a , but for a larger a /a2 , P increases

22-_ when o2 c is increased, reaches a maximum value, and then

decreases. It is also noted that from the viewpoint of real

world applications, the case of large a2/ 2 with large n is

especially interesting; e.g., as seen in Table 2, the kill

probability for n = 16 and a2/ 2 = 8.0 is improved to 0.5881

when 2/ 2 is increased to a suitable value. The maximum P

2 2
is more than 1.7 times the original value for a 2 = 0.

19



Table 1. Salvo Kill Probability
*, .j •

n = 2

S22

22.:-" o2/a 2  0.00 0.50 1.00 2.00 4.00 8.00

i.* 0.0 1.0000 0.8333 0.6667 0.4667 0.2889 0.1634

0.1 0.9917 0.8171 0.6591 0.4669 0.2923 0.1666

0.2 0.9722 0.7977 0.6487 0.4647 0.2940 0.1689

0.3 0.9467 0.7767 0.6365 0.4609 0.2946 0.1706

0.4 0.9184 0.7550 0.6232 0.4560 0.2944 0.1717

0.5 0.8889 0.7333 0.6095 0.4502 0.2935 0.1724

0.6 0.8594 0.7120 0.5956 0.4439 0.2920 0.1728

*. , 0.7 0.8304 0.6912 0.5818 0.4373 0.2902 0.1730

0.8 0.8025 0.6712 0.5681 0.4305 0.2881 0.1729

0.9 0.7756 0.6518 0.5547 0.4236 0.2858 0.1726

1.0 0.7500 0.6333 0.5417 0.4167 0.2833 0.1722

0720
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Table 2 Salvo Kill Probability

n = 16

a 2 /a2

a 2 /a2 0.00 0.50 1.00 2.00 4.00 8.00

0.00 1.0000 0.9935 0.9412 0.7835 0.5511 0.3370

0.25 1.0000 0.9956 0.9570 0.8234 0.6013 0.3784

0.50 1.0000 0.9965 0.9659 0.8504 0.6399 0.4128

0.75 1.0000 0.9968 0.9710 0.8692 0.6700 0.4417

1.00 1.0000 0.9967 0.9739 0.8824 0.6938 0.4662

1.25 0.9999 0.9962 0.9752 0.8915 0.7126 0.4871

1.50 0.9997 0.9954 0.9753 0.8978 0.7276 0.5049

1.75 0.9993 0.9941 0.9745 0.9017 0.7394 0.5201

2.00 0.9985 0.9922 0.9728 0.9038 0.7485 0.5330

2.25 0.9972 0.9899 0.9704 0.9045 0.7555 0.5440

-' 2.50 0.9954 0.9869 0.9672 0.9038 0.7606 0.5534

2.75 0.9930 0.9833 0.9635 0.9021 0.7642 0.5612

3.00 0.9900 0.9792 0.9591 0.8996 0.7665 0.5678

3.25 0.9863 0.9745 0.9541 0.8962 0.7676 0.5732

3.50 0.9821 0.9692 0.9486 0.8921 0.7677 0.5776

3.75 0.9772 0.9635 0.9427 0.8875 0.7670 0.5810

4.00 0.9719 0.9573 0.9364 0.8824 0.7655 0.5837

4.25 0.9660 0.9507 0.9298 0.8769 0.7634 0.5857

4.50 0.9597 0.9438 0.9228 0.8710 0.7607 0.5870

4.75 0.9530 0.9366 0.9155 0.8648 0.7576 0.5878

5.00 0.9459 0.9291 0.9081 0.8583 0.7541 0.5881

5.25 0.9386 0.9214 0.9004 0.8516 0.7502 0.5880

5.50 0.9309 0.9135 0.8926 0.8448 0.7460 0.5874
% 5.75 0.9231 0.9055 0.8847 0.8378 0.7416 0.5865

6.00 0.9151 0.8973 0.8767 0.8307 0.7369 0.5853

%,

. ..
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Experience shows that there is one and only one local maximum
I 2 2 2

of P as a function of a2/at for fixed n and oi/a , but we

have not succeeded in obtaining a proof.

The salvo kill probability can be increased by increasing

2 2 2 2
0/a from zero for given n and a /a if the condition below

is satisfied.

Proposition 2.1

The salvo kill probability P for fixed n, 01 and a is

not maximal at a2 = 0 if and only if

"€-1 i i1 + 2 + " + n 1 (2.8)
1X 2+X "n+X

where

2 2

/1

Proof

'.- We will show that

dP/dpl > 0 (2.9)

is equivalent to (2.8). Using (2.7), (2.9) is written as

-t/X n-i -t-t/A n-l /i
",'." n (1-e-t~-e-t -dt < n f (l-e-t/X)n-e-t/-t/,X dt

0 0
(2.10)

22
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.. Now define

I(x) = n (1 -e-t/)n- e - t / X- x t dt
0

Then the inequality (2.10) is rewritten as

I(1) < -I (i) I ,(2.11)

where I'(i) means the value of the derivative dI/dx at x = 1.

Let s = exp(-t/X) in the integral, then I(x) is

:' 1 sXxls)n-i d

I(x) = nXf s (1-s) ds
0

= X n n-i 1
Xx+l Xx+2 Xx+n

Therefore,

I'(x) n X nX j--1

The inequality (2.8) is readily obtained from this

equation with x = 1 and (2.11). 0

Proposition 2.2

A sufficient condition that the salvo kill probability

P for fixed n, al, and a is not maximal at a2 0 is

23
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2 2 n/ (e-1 (2.12)

./0 =04

Proof

Since l/(x+X) is decreasing in x,

n 1 n ~ d n+1 1! x . n+1+X
I j x ___+

J-1 J__6~ j i x+X 1 xdX =i

If the right-hand-side is equal to or greater than unity,

i.e., 1+n/(1+X) e, then the condition (2.8) in Proposition

2.1 is satisfied. The relation (2.12) is immediate from the

above-mentioned inequality. 0
46.1"-

N.J Proposition 2.3

Assume that (2.8) holds. A necessary condition that the

N salvo kill probability be maximum at some point 02 > 0 for
C-2

fixed n, a1 and a is

X ]- = 0, (2.13)
j=1 (p+j)

where

a2a2 (a ~2+a2 2

Proof

___ Differentiate (2.7) with respect to p, and equat it to

0. The equation (2.13) is immediate.0
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Example. Case n = 2

Equation (2.13) is generally too complicated to be solved

for a 2/a in closed form. Here we solve it for the simplest

case, n = 2.

The inequality (2.10) with n = 2 is

"""1 + 1 > 1
""+x 2+X

and after a bit of algebra, this reduces to

/X= a2/ 2  > 2/(/5 - 1) (2.14)

Now, assume that l/c is large and satisfies (2.14). From

(2.13)

2 2X 2 0

2 2
, (p+l) P (p+2 )

Therefore,

223 = /Xl = (p+l)-p (p+ 2 )

(2.15)

22 = (p+l) 3
Gl/a = iI = 2 2•P (p+2)

2 2This is a parametric expression of maximizing a2/a as a

value of the parameter p which corresponds to the point

25
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.2 /C&/2 = (/+1)/2, 2 /a2 = 0) is p = Po, where

n2

P0 = (15- 1)/2

When p approaches zero,

2/ 2 ,2 2 2.". O/a 1/4 p 2/a 1/4 p
1 .

and therefore, the asymptotic form of the curve is

a 2 2 1 /(2.16)

..,,' B. COMPUTING THE SALVO KILL PROBABILITY

In the preceding section, the Weiss formula for the salvo

kill probability was given in (2.7). According to Breaux

[Ref. 7], this formula is not suitable for calculation for a

large n because it is an alternating series. Breaux pointed

out that the salvo kill probability could be expressed in

.r terms of an Incomplete Beta Function, and that for large n,

Tang's method [Ref. 8] would be advisable for calculating an

Incomplete Beta Function.

4.- First, we present a recurrence formula for calculating the

re salvo kill probability which is, in principle, the same as

that of Tang's method. Its generalization will be given in

a later chapter.
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Proposition 2.4

" Let us denote the salvo miss probability by n weapons as

Q(n) = 1-P.

Q(n) = f (l-pe-t/P) n e- t dt . (2.17)
0

-. .'%

Then Q(n) satisfies the following recurrence equations:

Q-(n) n Q(n-1) + p-(1_ , n = 1,2,... (2.18)
: .n+p

Q(0) = 1 , (2.19)

.'A

where

2 2 2 2 2 2
= X/ = a (2 +02) = (a +a2/a2 2) 1

Proof

From (2.17)

Q(n) ,e-t/p )n e-t dt

0A.'.., Q~) = 1

fo(1-p-t /pn-le-tdt G 1-,,-t/pln-l.-t/ -tdt

- 0 0

28
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The first term in the right hand side is Q(n-l). In the

second term, we integrate it by parts, and have

Q~) Q(n-l) - ELU-e t/p n -t 1 p0 RfC 1 -t/p n -t d
n0 n0

,l~ ~~ "p ( " ...

Q(n-l) P aln-2 Q(n)n n

The equation (2.18) is immediate.0

It is worthwhile to note that the method presented in

Proposition 2.4 gives not only the value of Q(n) for a

specified no, but also gives all the Q(n) 's up to no. It

is an important advantage of this method over the Weiss

formula because we are often interested in the salvo kill

probabilities for several n's. As is shown in Table 3, the

computational time for Q(n) by our recurrence algorithm is

pt

about twice the time required for computation of a single

Q(n) using the Weiss formula. When the salvo kill probabili-

ties for more than a single n are needed, therefore, use of

the recurrence algorithm given in Proposition 2.4 is

i.%"* $%

recommended.

We have another efficient algorithm for computing the

salvo kill probability, which is good even for large n.

29
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Table 3. Comparison of the Processing Time forComputing the Salvo Kill Probability

Mean time (microsecond), p = 1, and P = 0.5.

n Weiss formula Recurrence formula

10 92 175

20 189 383

30 300 587

Mean time (microsecond), p = 1, and n = 10.

Weiss formula Recurrence formula

0.1 90 196

0.5 92 175

0.9 100 186

Computation is on the IBM 3033 installed in the Naval

Postgraduate School. Each value is the mean of 4 trials.

one trial is 1000 repetitions of calculation, and the

elapsed time units are divided by 1000 and multiplied by

26 (microseconds).

--. 'I-3
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Proposition 2.5

The salvo miss probability Q(n) by n weapons

Q(n) = ( (-ue-t/p)n e- t dt (2.17)

0

satisfies the following relationship

Sn n n-k k
=Q(n) (k) (l-U) ]i q(k) (2.20)

k=O

where q(k) is the salvo miss probability by k weapons with

co

q(k) = f (1 e - t/p)k e-t dt
0

Proof

Q(n) = {(i -) + (le-t/) n e-t dt0

I n n-k pk f -e -t/p k e-t

k=0 0
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Corollary 2.6

The salvo miss probability (2.17) can be calculated by

the formula

n
Q(n) I A k  (2.21)

k=0

where

Ak/Ak_ = ju(n-k+l)/(l-u))(k+p) , k = 1,2,...

(2.22)

A 0 nA0  = (i- a)n

Proof

As can be seen from (2.18) and (2.19) with 1 = , q(0)

is unity, and q(k)/q(k-1) is k/(k+p). Utilizing the fact

that ()/(kn = (n-k+l)/k, the corollary can be obtained by

substitution. C

' Note that all the terms in the expression (2.24) are

positive, so there is no problem arising from cancellation

of terms with alternating signs as was observed in the Weiss

formula (2.7).

_In checking the computation, the following P's for special

..'. cases would be of use.

(1) The case a1 = 0 corresponds to p , and we have
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(2) The case a 2 = 0 corresponds to p = 1, p = X, and so

from the recurrence formula, we have

P = 1- n(n-1) ... 1
*. ,. ., (n+L) (n-l+X) -.. (i+A)

(3) The case a2 +a2 = a2. The formula (2.5) with p = 1

is easily integrated to give

A n+p = 1 - +-rl- (l-X) } , (2.25)

where

= /(a 2 + a) , 2 = 2/

C. BOUNDS TO THE SALVO KILL PROBABILITY

In Chapter I it was pointed out that an upper bound of

the salvo kill probability is given by the kill probability

of n repeated independent shots.

P <P

.- . where

. = 1 - [f f {l-p(u,v)}f(u,v)dudvln

Under the assumptions of the present chapter, we have

".-. 33
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Proposition 2.7

An upper bound to the salvo kill probability is given by

,% 
I n

P = 1 - (1 - --- ) , (2.26)

where

2 2 2 2 2
a /0 1  + 2)/ 1

As to a lower bound, we have.5.

Proposition 2.8 (Merritt and King)

A lower bound to the salvo kill probability is given by

P 1 - p(nu) rp (p) (2.27)

where r (p) is the Incomplete Gamma Function,

x
. r () = et t 1 dt

* -*. and

,L 2/(a2 + 2 ) (a2 + 2 )/a2

Table 4 and Table 5 show how the true kill probabilities

are bracketed by these two bounds. The triplets of entries

• .'-34
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w.v. Table 4 Salvo Kill Probability and Its Bounds

n= 2

Y 22/a 2

a 2 2 0.00 0.50 1.00 2.00 4.00 8.00

0.8889 0.7500 0.6400 0.4898 0.3306 0.1994
0.5 0.8889 0.7333 0.6095 0.4502 0.2935 0.1724

0.7364 0.6187 0.5216 0.3911 0.2580 0.1527

0.7500 0.6400 0.5556 0.4375 0.3056 0.1900
1.0 0.7500 0.6333 0.5417 0.4167 0.2833 0.1722

0.6321 0.5443 0.4715 0.3679 0.2532 0.1552

0.6400 0.5556 0.4898 0.3951 0.2840 0.1814
1.5 0.6400 0.5524 0.4825 0.3829 0.2696 0.1689

0.5507 0.4832 0.4267 0.3429 0.2442 0.1542

0.5556 0.4898 0.4375 0.3600 0.2653 0.1736
2.0 0.5556 0.4881 0.4333 0.3524 0.2554 0.1643

0.4866 0.4333 0.3882 0.3192 0.2338 0.1516

0.4898 0.4375 0.3951 0.3306 0.2489 0.1664
2.5 0.4898 0.4365 0.3925 0.3255 0.2418 0.1593

0.4353 0.3922 0.3554 0.2977 0.2233 0.1482

0.4375 0.3951 0.3600 0.3056 0.2344 0.1597
3.0 0.4375 0.3944 0.3583 0.3021 0.2292 0.1542

0.3935 0.3580 0.3274 0.2784 0.2131 0.1444

0.3951 0.3600 0.3306 0.2840 0.2215 0.1536
3.5 0.3951 0.3596 0.3294 0.2815 0.2175 0.1492

0.3588 0.3291 0.3032 0.2611 0.2034 0.1404

0.3600 0.3306 0.3056 0.2653 0.2099 0.1479
4.0 0.3600 0.3303 0.3048 0.2635 0.2068 0.1443

0.3297 0.3045 0.2823 0.2457 0.1944 0.1365

Triplets are, from the top, P, the upper bound,
P, the tzue value, and P, the lower bound.
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Table 5 Salvo Kill Probability and Its Bounds

. n = 16

/ 212

S2/a 0.00 0.50 1.00 2.00 4.00 8.00

1.0000 0.9997 0.9985 0.9900 0.9459 0.8147

1.0 1.0000 0.9967 0.9739 0.8824 0.6938 0.4662
0.9997 0.9944 0.9688 £.8750 0.6867 0.4611

0.9985 .0.9954 0.9900 0.9719 0.9151 0.7824

2.0 0.9885 0.9922 0.9728 0.9038 0.7485 0.5330

0.9952 0.9862 0.9644 0.8935 0.7388 0.5258

0.9900 0.9821 0.9719 0.9459 0.8819 0.7515

3.0 0.9900 0.9792 0.9591 0.8996 0.7665 0.5678

0.9817 0.9685 0.9469 0.8864 0.7546 0.5590

0.9719 0.9597 0.9459 0.9151 0.8481 0.7222

4.0 0.9719 0.9573 0.9364 0.8824 0.7655 0.5837

0.9592 0.9432 0.9215 0.8674 0.7522 0.5739

0.9459 0.9309 0.9151 0.8819 0.8147 0.6945

5.0 0.9459 0.9291 0.9081 0.8583 0.7541 0.5881

0.9305 0.9130 0.8917 0.8424 0.7402 0.5778

0.9151 0.8987 0.8819 0.8481 0.7824 0.6684

6.0 0.9151 0.8973 0.8767 0.8307 0.7369 0.5853

0.8983 0.8802 0.8597 0.8145 0.7229 0.5749

- 0.8819 0.8650 0.8481 0.8147 0.7515 0.6439

7.0 0.8819 0.8639 0.8441 0.8016 0.7167 0.5780
0.8647 0.8468 0.8273 0.7857 0.7030 0.5677

0.8481 0.8313 0.8147 0.7824 0.7222 0.6209

8.0 0.8481 0.8305 0.8117 0.7724 0.6952 0.5680

*0.8310 0.8136 0.7953 0.7570 0.6819 0.5579

Triplets are, from the top, P, the upper bound,
P, the true value, and P, the lower bound.
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in the table are, from the above, the upper bound P, true

value P, and P, the lower bound. It is observed that

P-P is not small for smaller values of a 2 /a, but gets smaller
22 22.

when is increased. If 2/a 2 is small, and P are

close. On the other hand, P is fairly close to P over wide

2 2 2
ranges of ai/a and a-/ 2 Figures 3 and 4 illustrate this.

It seems reasonable that Merritt and King used P as an

approximate formula for P in their study on the optimal

ballistic dispersion, because computation was really a

problem at that time. Nowadays, however, direct computation

of P is much more natural.
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III. OPTIMIZATION OF SALVO FIRING

In Chapter II we have learned the following: The salvo

kill probability is a decreasing function of 01 if other

parameters are kept constant. Therefore, to obtain higher

salvo kill probability, it is necessary to make aI as small

as possible. The salvo kill probability as a function of

02 is, however, complicated. If 01 is sufficiently small,

the salvo kill probability is monotone decreasing in 02'

but if 01 is not so small and satisfies the condition (2.8),

then the salvo kill probability is not maximal at 02 = 0,

but takes a maximum value at some 02 > 0. In other words, the

smallest ballistic dispersion is not always most desirable.

Deliberate increase of the ballistic dispersion is encoun-

tered in shotguns and in related military weapons. In this

chapter we present an approximate formula for the optimal

ballistic dispersion. We will first briefly sketch Walsh's

theory [Ref. 9] since our approximate formula is based on

it. In Section B our approximate formula is presented.

Its accuracy will be studied in Chapter IV.

A. WALSH THEORY

The Walsh model is based on assumptions similar to those

of Chapter I. A salvo of n weapons is fired at a target.

The impact point error is composed of two parts, a random

bias which is common to all n weapons, and a round-to-round

40
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error. A Cartesian coordinate system is chosen so that its
,.

origin coincides with the center of impact of n weapons.

The coordinates of the random position of the target are

denoted as U and V with respect to this system. The joint

probability density of U and V is given by fl(u,v). The

impact points of weapons (Xi,Yi) are independent and iden-

* tically distributed random variables with joint density

f2 (x,y). It is assumed that impact of a weapon at (x,y),

given the target is at (u,v), destroys the target with

probability D(u-x,v-y) independently of other weapons.

The lethal area of a weapon is denoted as A:

f f D(x,y)dxdy A

The salvo kill probability is given by (1.2),

Pf f {1 Puvlf (u,v)dudvo 0{1 - p(u,v)}nf(~ ddv,(1.2)

-00 -00

where p(u,v) is the conditional destruction probability by

a single weapon given that the target is at (u,v).

p(u,v) = f f D(u-x,v-y)f2 (x,y)dxdy . (1.1)
-00 -00

Note that p(u,v) can be integrated to give A.
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' f f p(u,v)dudv - A f f f (x,y)dxdy = A (3.1)
- 0 -0 -0 -00

The problem is to derive the optimal ballistic disper-

sion, 0 . Instead of solving the original problem, Walsh

solved a revised problem that was different from the original

one in that the variable is not a2 itself but rather the

function p(u,v) .

,." Proposition 3.1 (Walsh)

4' max P = 1 - f ' {l-p(u,v)}nf (u,v)dudv (3.2)

subject to

00 CO

f J0 p(u,v)du dv A

(3.3)

p(uv) 0 0

has a solution
-_.

"'. - }n--.L (u,v) e E1 - f (u,v)

p*(uv) (3.41

0 (u,v) e E

where

.. 4
..* .4€, ". ' '

.,,p .-.. * .•'*42.
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Ei+ m (u, v) fl(u, V) > c} (3.5)

C is positive and is given by

..% -.".

f f p*(u,v) dudv = A . (3.6)
E

The corresponding salvo kill probability is

P*= C + f f {f1 (u,v) - CI dudv . (3.7)
q" E

-F.-

In case the random target bias is given by a normal

-.[ distribution, we also have

Corollary 3.2

max P = 1 - f J I - p(u,v)}nf (u,v) dudv (.3.8)
p(- --

subject to

CO 00

'Ff J p(u,v) dudv = A
00

FN. (3.9)
"'= ... ,.

p (u,v) 0

-where

.. 2 2

a- u 2av

= q1 2o u a
f (u'v) 27rouav e (3.10)+.,.

43h +".
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has the solution
2 2

1-exp{-0 +21 2(-I )} (U,V) E E

p*(u,v) u v (3.11)

0 (u,v)

where

"- u 2 c 2  v2/ 2

E = {(u,v) u /a + v < 2(n-l)1}
U

* is positive and is determined by

e- -l+ - A/27r (n-l)ua v  = 0 . (3.12)

The maximum value of the salvo kill probability is given by

P*= 1 - e - ( n - l ) { + (n-1)(1-e - O)} . (3.13)

Proof

The equation (3.11) is readily obtained from (3.4) in

Proposition 3.1 with f1 (u,v) given by (3.10) and C,

C = e- . (3.14)

Substituting (3.11) in (3.6) and changing variables into

(r,e) by
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S4.

u /2(n-1) ur cos 0 , v = ,2(n-1) a vr sin 6 (3.15)

we have

A = f f p* (uv) du dv

E

=. 2r (n-1) au 0 (f - ) 2r dr

27 2(n-1) a a (0 -1+ e
U V

Substituting (3.10) and (3.14) in (3.7) with (3.15),

A -(n-l)$ 2rT VT
"' p* = 2 uv e + 27 uv (n-1) u av  f (e-(n-l)r - (n-l) )2 roo 2r~ u e-e 1 )2rdr

S1 - e- (n10{1 + (n-1)4 - A/2rou a "

This formula together with (3.12) gives (3.13). 0

For simplicity, let us call the function p*(u,v) the

(Walsh) optimal p function, and the associated salvo kill

probability P* the Walsh optimal P. It should be noted that

the constraint in the revised problem is weaker than that of

the original problem, and so the Walsh optimal P is an upper

bound to the maximum salvo kill probability of the original

problem. It should also be noted that the Walsh optimal p

function is not feasible in the original problem (being non

zero on only a finite set) if dispersion is present.
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B. APPROXIMATE FORMULA FOR THE OPTIMAL BALLISTIC DISPERSION

Walsh developed the theory stated above, but he did not

extend his theory beyond the results (3.4)-(3.7). The impor-

tant part left by Walsh and subsequent workers is to bridge

the gap between the revised problem and the original prob-

lem. Walsh got the optimal p function as given in (3.4),

whereas we need the optimal density function f (x,y). The

material in this section bridges that gap.

Let us define three double Fourier transforms as follows:

P*(Wifw2) =f f e 1 + 2v p* (uv) du dv,

D(w11w) f f e e 1  2  D (x, y) dx dy (3.16)
2 ~-co -00

f 2 (W1 1W2) f f e f X+ 2 (x, y)dx dy

Then from (1. 1) we have

p*(w 1 "w2) D(w 1w 2 )f 2 (W1 1W 2 ) (3.17)

In the Walsh theory, D(x,y) is a given function, and

C177 the Walsh optimal p function is given by Proposition 3.1.

6' Therefore, both D(w 1 w 2 ) and p*(w1 ,w 2) in (3.17) are now

known functions. Thus the Fourier transform of the "optimal"

f@7 f(x,y) can be calculated by
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f2 (i 2, (3.18)

D(W 1 AW2 )

and we will get f2 (x,y) as its inverse Fourier transform.

This might have been the end of Walsh theory, but there are

difficulties. First, we do not have any guarantee that

f2 (x,y) is a density function, because Walsh solved the

restricted optimization problem subject to p(u,v) _ 0 but not

f2 (x,y) > 0. Further, even if this problem were solved, there

would still remain the problem of feasibility of the f2 func-

tion. Walsh suggests in his paper that it would be possible

to obtain a real-world dispersion function f2 (x,y) as the

theory requires, at least approximately, by careful design

of the ammunition, but this may be asking too much of the

manufacturing process. We assume below that the function
f.-,'a 2 (x,y) is normal, with only the variance a subject to

manufacturing control.

The problem, then, is to determine or approximate the

optimal ballistic dispersion a , given the damage function

D(x,y) and the function p*(x,y) from (say) Proposition 3.1.

In the following, both D(x,y) and p*(x,y) are assumed to be

even functions of x and y respectively, and to have "moments"

of all degrees. The lethal area is denoted as A.

CD Go
f f xD(x,y)dxdy- J f yD(x,y)dxdy = = 0, (3.19)
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f j j xp*(x,y)dxdy f f yp*(xy)dxdy = =
-.- 00 _-C _-W -M

:.W J D(x,y) dxdy - A, (3.20)-. ". -o

5-'.., . - -

f f x2kD(x,y) dxdy < =, k = 1,2,
, i - -

fo_ fo x2kp * (x,y) dxdy < -, k = 1,2,
-00 -00

etc.
S'%

For the sake of generality, we actually consider the non-

symmetric case where the optimal dispersion may be differ-

ent in the x and y directions. Let the two dispersions be

a2 and 2 Thenx y

, .-.'. 2 S

2a 2ay
f 2 ( xy) a-1 e x y (3.211

with the double Fourier transform

'.2 2 2 2-A a l

f 2 1 i, 2 ) = e . (3.221

a, 48
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Expanding the exponential function in the double Fourier

transform of D(x,y), and integrating term by term, we have

~ i__x+w2y)D(w VW2) = f f e D(x,y) dxdy
2 ~ -00

,.2. r I ( 1x+W 2 y) D(x,y) dxdy
j=O

-'-"- Al k2 A 2 ~~ydd

2

- A~ f  y2 D(x,y) dxdy + ... 1

'i -CO -00

where the third line is obtained because D is even. There-

. fore, for sufficiently small values of 2 and w2

D DO (WiW 2) (3.23)

o

where

2

D D0, 2  = Aexp D f xD(x,y) dxdy

-.'2 f y2D(x,y) dxdy] (3.241

...,..,.., r ,.z

Similarly,

k"-4
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p" (W*W 2 ) p0 (W1 ,W2 ) (3.25)

for small 2 and w2, whereC2

Wi 1

PI(W1 W 2 1 f Ae0 f A 0 x2p*(x,y) dxdy

2
- 1 O 0 y2p*(x,y) dxdy] (3.26)

_00 -00

Now we determine two parameters a 2 and a 2 in (3.21) byx y

the relation

"; i : ~PO W1 '2)
f 2 (_i 2) = ") (3.27)

Then from (3.22), (3.24), and (3.26) we get an approximate
formula for the optimal ballistic dispersion:

2 1 CO C 2{p
Ox = [k f f x{p* (x,y)-D(xy)} dxdy, 0]+

(3.28)

2= 1 00 2 2{p
ay = f~ f y {p* (x, y) -D (x, y)} dx dy, 0] +

_00 -Cc

where

(a if a 0
' " [a,0 ] +  =( 3.29 )

0 otherwise

:-. >Iso
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Note 1

In this proposition, the approximate formula for the

optimal dispersion is derived from the condition that

f a.-. cicie wit f*(f 2 (ic 2 ) coincides with f2 ( 1 1 W2 ) for infinitesimally small

w 2 and w2 . It would be better if we could derive the approxi-

mate formula from the condition that f2 (W111,2 ) is nearly
a aidrdoanf2 2

equal to over a wider domain of W and w which
'. include (0,0). In the next chapter we will give an idea of

"* improving the approximate formula taking this into account.

Note 2

Generally, approximation (3.23) with (3.24) is accurate

only up to the second power of w and w If the damage

function is of Gaussian type,

2 2
Y

2a 2a
2

D(x,y) = e x y

then

D0 (wIw 2 ) = D ,2

is an exact relationship.

As a corollary, we have the following approximate formula

for the model with normal errors and Gaussian damage function.

Consider a salvo firing of n weapons. The density func-

tions of the random bias and the round-to-round ballistic

51
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*' error are, respectively,

2 2
-u v

2 2
1.2a 2a

f 1 (uv) 72ra a e (3.32)

and

2 2x y

2c 22

f2(xy) = 21Toa e x ,'y (3.33)
. x y

the damage function is given by

,.... 2 (v-y)2

2 22  2a2
D(u-x,v-y) = e u v (3.34)

Then approximate formulae for the optimal ballistic dispersion

for fixed n, au' av' cx, and ay are

(ax/ ) [(n-l) 2 2 (au/ax) 3 (v/a~y)-(n-l) (cu/cax) -1,0]

(3.35)1

(ay/a 2 [1(n-1) 2 2(av/a y ((u/ax(n-1) (/Y /2y) 21 1.01 +

where * is determined by the equation

e - 1 + * - (ax/a u)(ay a )/(n-1) = 0 . (3.36)
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An upper bound to the maximum salvo kill probability is given

by

e- (nl) ~{ + (-) (-% (3.37)

The solution to the Walsh problem with the above men-

tioned assumptions is already given in Corollary 3.2. By

use of (3.11), we have

1. f" f" u p* (u, v) du dv

3 rCY~ a /2 (n-1)P 12

A 27T f 0 r (l-e rd

3
Ir {(n-l) 2 2 (n-1) A/7ra a
A; u

and

1o f cc x 2 D(x,y) dxdv a 2
A _0 -00

H Substituting these relations into (3.28), we get the approxi-

__mate formula for a 2 (3.35). Similar arguments follow for

02.
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IV. SIMPLE SALVO MODEL REVISITED

In this chapter we apply the general approximate formula

for the optimal ballistic dispersion obtained in the last

chapter to the Simple Salvo Model dealt with in Chapter II

and investigate its accuracy.

The assumptions in this chapter are the same as those in

Chapter II. We consider a salvo of n weapons against a

target. The impact point error is composed of two parts,

the random bias and the round-to-round error. The position

of the target (U,V) has a circular normal distribution centered
2

at (0,0) with variance a2. The impact points of the ith

weapon (X,Y) are assumed independent and identically dis-

tributed circular normal random variables centered at (0,0)

2with variance a2. Finally, we assume the circular Gaussian

damage function with parameter :

22u +v
2a

f (uv)1 e 201(4.1)

" fl(U,) = 2 e 22 ,(4.2)
2 2

f 2 (x,y) 22 e (4.2)

(u-x) 2+(v-y)2

D(u-x,v-y) = e 2 (4.3)
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In (3.35), let

{au = Ov = 01

Ox = a = a2  (4.4)

ax = y

then we have the following:

An approximate formula for the optimal ballistic disper-

sion of the Simple Salvo Model is given by

a2 /Q = [2 z - z - 1, 01+  (4.5)

where

z = (n-l)a2/a = 1/(e-0 +0 (4.6)

An upper bound to the maximum salvo kill probability is given

by

4,.

= 1 - e(n-l) {1 + (n-l) (l-e -)} . (4.7)

The true optimal a2 /a2 is a function of n and a2/a , but

according to (4.5) and (4.6) the approximate a2 /a2 is deter-
222:;:'::::2 2

mined by z = (n-l)a , being a parameter. To obtain an

explicit formula for a2/a in z instead of the parametric

form, we have
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Lemma 4.1

The series solution to the equation in P,

e - €  1 + c-u 2 /2 = 0 (4.8)

is given by

2 2 3 4 5. =.u + u /3 + u /12 + u /60 + ... (4.9)

Proof

Let the left-hand-side of (4.8) be expanded in *.

Then

2 .2 2 3
u (1 - 0/3 + /12 - /60 + ... )

If the terms in the right-hand-side of (4.9) are expanded

in *, we have

2= 2 -3/3 + /12 - /60+ ...

u3 /3 3 -/3-4/6 + 5 /18-

Su /12 = /12 - /18 +

5 5
u /60 = -/60-

he from which (4.9) is obvious.

-\..
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Using the Lemma and the relationship (4.6), we can express

22O~2 c in (4.5) as a power series in /2/ If we keep only

the first three terms in the expansion, we get an alterna-

tive approximate formula for the optimal ballistic disper-

sion which we will denote as a2
- aN'

2 2 2 - 5 (.0a/a = -zI2 + z , 2 ' (4.10)
a 3 6 3 0

Z

with

22Z = (n-l)a /at

In Table 6 two values of the approximate optimal ballis-

tic dispersion are compared. One is calculated with (4.5)

*.. and (4.6), the other with (4.10). Agreement seems quite

satisfactory, differences appearing at most in the fourth

decimal digit. The formula (4.10) needs more terms to be a

Table 6. Comparison of Two Formulae

2 2 2 2 2 2Z = (n-l)a 1 /a 02/a ,a/a

_ 800.0 12.5017 12.5017
400.0 8.5971 8.5971
200.0 5.8367 5.8367
100.0 3.8855 3.8854
50.0 2.5069 2.5067
25.0 1.5335 1.5331
12.5 0.8475 0.8467

2 2
a- /a is calculated by (4.5), (4.6), and4 22

a 2 a 2is calculated by (4.10)
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good approximation for smaller values of z, but later we

will see that the case with z less than 25 is not important

from the viewpoint of application.

Note

For n - 2, the formula (4.10) gives

Sa 2 V- /- + / (4.11)

In Chapter II, the exact formula of the optimal ballistic

dispersion was derived for n = 2. The series expansion of

a 2 /a2 is

2 1 3 1

r % It is interesting to note that every term in (4.11) is smaller

than the corresponding term in (4.12): The approximate

value given by (4.11) for n 2 is always smaller than the

• .true value.

For comparison's sake, we will also consider the classi-

cal approximate formula by Merritt and King [Ref. 2] who

approximate the optimal ballistic dispersion by a where

: .:, o~ac = zic(13
cc

.d
C/a

2 2z = no . (4.14)
c 1
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A. ACCURACY INVESTIGATION

S.In this section we will investigate the accuracy of both

our approximate formula and the classical one.

Table 7A for z = 400, Table 7B for z = 100, and Table

7C for z = 25 illustrate the calculation carried out for the

accuracy study. For a fixed z, the approximate value for

2
the optimal ballistic dispersion divided by a is a constant

which is given next to the value of z in the table. On the

other hand, the true optimal value increases with n: The

first column is n and in the second column is given the corres-

ponding true optimal a2/a , the calculation of which is based

*on the necessary condition of optimality (2.13), and requires

fairly long calculation time. The relative error of our
approximate formula Aa 2 = (a2 a2)/ 2 x100% is given in thea a -a 22x10%t

3rd column. Its value is found to always be negative. The

salvo kill probability associated with a2 = 0 is denoted as

P0 and is in the fourth column. The fifth column is the upper

bound F of the maximum salvo kill probability given by (4.6)

and (4.7). In the sixth column, we have the true maximum

salvo kill probability designated simply as P which is calcu-

lated by (2.21), (2.22) with the optimum 02 given in the

2nd column. The entries in the 7th column are the salvo kill

probabilities associated with the approximately optimal dis-

2persion a. The notation Pa is used for it. The last column

is the relative loss in the kill probability which would be

2.caused if we were to use the approximate value a a instead of
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Table 7 Accuracy of Approximation (4.10)

A z - 400, o/ = 8.60

n a "t a"7, PO P P0 1 A p ,

5 9.34 -7.9 0.0225 0.0414 0.0410 0.0410 0.0
10 9.46 -9.1 0.0634 0.1484 0.1456 0.1454 0.1
15 9.57 -10.2 0.1088 0.2777 0.2709 0.2704 0.2
20 9.67 -11.1 0.1556 0.4063 0.3952 0.3943 0.2
25 9.76 -11.9 0.2024 0.5229 0.5081 0.5067 0.3
30 9.84 -12.6 0.2484 0.6230 0.6056 0.6038 0.3

35 9.92 -13.3 0.2931 0.7061 0.6873 0.6851 0.3

40 9.98 -13.9 0.3362 0.7733 0.7542 0.7518 0.3

B z = 100 , oz'/c'1 3.89

4 4.31 -9.9 0.0600 0.0905 0.0891 0.0890 0.1

8 4.41 -11.8 0.1703 0.2947 0.2872 0.2866 0.2

12 4.48 -13.4 0.2828 0.4952 0.4809 0.4794 0.3
16 4.55 -14.6 0.3877 0.6558 0.6371 0.6350 0.3
20 4.61 -15.7 0.4817 0.7727 0.7529 0.7503 0.3

24 4.66 -16.6 0.5641 0.8534 0.8348 0.8321 0.3
28 4.70 -17.4 0.6352 0.9071 0.8910 0.8885 0.3

32 4.74 -18.1 0.6959 0.9419 0.9288 0.9266 0.2

C z 25, Wfaca 1.53

n rl, A(. Pe P P . j

2 1.77 -13.6 0.0573 0.0660 0.0652 0.0651 0.1

4 1.82 -15.9 0.2137 0.2733 0.2663 0.2657 0.2

6 1.86 -17.8 0.3706 0.4822 0.4674 0.4658 0.3

8 1.90 -19.3 0.5076 0.6497 0.6299 0.6274 0.4

10 1.93 -20.5 0.6206 0.7710 0.7497 0.7468 0.4
12 1.95 -21.5 0.7107 0.8539 0.8339 0.8309 0.4

14 1.98 -22.4 0.7812 0.9085 0.8912 0.8884 0.3

16 1.99 -23.1 0.8356 0.9435 0.9295 0.9271 0.3
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2the true optimal a AP = (P -P)/P x 100%. It is noted that

in the case with a large z value the salvo kill probability

is much improved by employing the optimal ballistic disper-

sion. For instance, when z = 400, the ratio P/P is around
* 0

2.5. But the improvement is not so much when z gets small.

In the case with z = 25, the ratio is at most 1.25.

As to our approximation, we observe the following.

V2
(1) The approximate a2 is always smaller than the truea

value, at least for the values of z investigated.

(2) The discrepancy between the approximate and the

true values is larger for smaller z.

(3) For a fixed z, the optimal ballistic dispersion a22

increases as n is increased. Thus the discrepancy

grows when n increases for a given z.

(4) However, we may say that the discrepancy is not so

serious because the kill probability associated with

the approximate optimal ballistic dispersion is not

so different from the maximum value. The relative

loss given in the last column is at most 0.4% which

occurs when z is 25, a less important case.

Figure 5 is presented here to illustrate the properties

1 and 2. The ordinate is the relative error Aaa, but it

2needs several words. The relative error Aaa varies with na

for a fixed z as seen in Table 7. To get a representative

Aaa value for a z, an n is picked for the given z such that

the maximum salvo kill probability is close to 0.6, an
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arbitrarily chosen figure. Then the corresponding Aa is

chosen for that z value, for instance -12.63 for z = 400,

and similar procedure follows for other z's. The bottom

curve in Figure 5 shows this relationship. Later we will

discuss other curves in the same figure.

From the figure we see that the relative error is always

negative and its absolute value is decreasing in z. The

z-dependence is, however, relatively small, and we learn

its bias to the negative side is a characteristic of this

approximate formula.

Similar investigation was carried out on the classical

approximate formula (4.13). Table 8A for zc = 400, Table 8B

for z = 100, and Table 8C for z = 25 correspond to Table 7,

the only difference being that z c is tabulated, rather than

z. From the tables we observe the following.

(1) The approximate a 2/a2 is larger than the true value

except for the cases of very large zc 's.

(2) The discrepancy between the approximate and the true

value is larger for smaller z c This tendency is

similar to that of our approximation.

2(3) For a fixed zc, the optimal ballistic dispersion 02

increases as n is increased. Thus, the discrepancy

gets smaller when n is increased for a given z c less

than 800.

(4) However, the discrepancy is not serious because the

kill probability associated with the approximate

63
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Table 8 Accuracy of Approximation (4.13)

A z = 400, acz/r(l 10.00

5 9.34 7.1 0.0225 0.0414 0.0410 0.0410 0.0

10 9.46 5.7 0.0634 0.1484 0.1456 0.1455 0.0

15 9.57 4.5 0.1088 0.2777 0.2709 0.2709 0.0

20 9.67 3.4 0.1556 0.4063 0.3952 0.3951 0.0

25 9.76 2.5 0.2024 0.5229 0.5081 0.5080 0.0

30 9.84 1.6 0.2484 0.6230 0.6056 0.6056 0.0

35 9.92 0.9 0.2931 0.7061 0.6873 0.6873 0.0

40 9.98 0.2 0.3362 0.7733 0.7542 0.7542 0.0

" B zC= 100, 6V/oc= 5.00

n *'/ta AMe Pa P PC4%

4 4.31 15.9 0.0600 0.0905 0.0891 0.0889 0.2

8 4.41 13.5 0.1703 0.2947 0.2872 0.2866 0.2

12 4.48 11.5 0.2828 0.4952 0.4809 0.4800 0.2

16 4.55 9.9 0.3877 0.6558 0.6371 0.6363 0.1

.. 20 4.61 8.5 0.4817 0.7727 0.7529 0.7523 0.1

24 4.66 7.3 0.5641 0.8534 0. 8348 0.8344 0.1

28 4.70 6.3 0.6352 0.9071 0. 8910 0.8907 0.0

32 4.74 5.4 0.6959 0.9419 0.9288 0.9286 0.0

C zc= 25, ocIr' - 2.50

n 6-2/0( A (r,2 P, P P, P

2 1.77 41.0 0.0573 0.0660 0.0652 0.0648 o.5

4 1.82 37.1 0.2137 0.2733 0.2663 0.2638 0.9

6 1.86 34.1 0.3706 0.4822 0.4674 0.4631 0.9

8 1.90 31.7 0.5076 0.6497 0.6299 0.6249 0.8

10 1.93 29.7 0.6206 0.7710 0.7497 0.7451 0.6

12 1.95 28.0 0.7107 0.8539 0.8339 0.8300 0.5

14 1.98 26.5 0.7812 0.9085 0.8912 0.888i 0.3

16 1.99 25.3 0.8356 0.9435 0.9295 0.9272 0.2
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optimal dispersion is not so different from the true

... maximum. The relative loss is at most 1%, and is
n2 2

. very small when a /a is large.
1

The top curve in Figure 5 is the relative error Aa of
C

the classical approximate formula, where the abscissa should

be read as z in this case. In spite of its simple form, it

is indeed an excellent approximation, in particular for large

z Is. The z -dependence of the relative error Aa 2 is, how-c c C

ever, more sharp than ours. The middle curve in Figure 5 will

be discussed in the next section.

B. IMPROVEMENT OF THE APPROXIMATION

In the preceding section, we investigated the accuracy
of the approximate formula given by (4.10), and it seemed

that (4.10) gave a lower bound to the true optimal ballistic

dispersion. The reason it gives a possible lower bound, and

a method of obtaining improved approximations will be con-

sidered now.

The Walsh optimal f and others in (3.16) are functions
2

of x,

k . = 2 2 2/2( .5
(w"" x =(w + w2 ) /2 , (4.15)

for the Simple Salvo MOdel, and so let us denote them as

fi(x) instead of f 2 (W1 , 2 ), etc. With this notation, (3.18)

_ is
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f 2 (x) = *(X)/D(x) (4.16)

2 2Equation (3.27) by which the approximate a a/ is determined

reads

": 2 2
-x(a/ -

f 2 (x) = e a p0 (x)/D 0 (x) , (4.17)

and

D(x) = D0 (x) (4.18)

because the damage function is assumed to be Gaussian.

The function p*(x) is the double Fourier transform of

the Walsh optimal p function given in Corollary 3.2 with

a- = a 1  and p0 (x) is an approximate formula for it

given by (3.26). Figure 6 illustrates what the curve of p*(x)

is like. The curve decreases as x is increased from zero,

changes its sign, and then swings back to positive with small

amplitude, and so forth. On the other hand, the approxi-

mating function p0 (x) is equal to p*(x) at x = 0, has the

- '*.same tangent there, and decreases exponentially. p0 (x) is

larger than p*(x) for a wide interval of x as is seen in

Figure 6.

P0 (x) > p*(x) , 0 <x <x 0

.7

.9%
" - 6 6
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Therefore, from (4.16) and (4.17), we have

'- 2 2_XCa,
e > f2(x) , 0 <x <x 0

2which suggests that a is smaller than the true optimal
a

value.

One of the simplest ways to get an approximate formula

would be to define a
b

" -exG2/ 2
xb/a~=(.9

>' .e O P0 (x)/D 0 (x) (4.19)

with 0 < 8 <1, or

2 2
C = aa1 8 , 0 < 8 < 1 , (4.20)

and to determine the parameter 8 empirically to achieve

satisfactory agreement between the approximate a.2 and the
b

2 2.. true a2. Note that the definition of ab corresponds to

approximating the p*(x) function by pl(x) with an exponent

1/6 times the exponent of P0 (x).

For example, let 1/8 be 1.15. Then,

ab = 1.15 a (4.21)
b a

In Table 9A, Table 9B, and Table 9C, we present the accuracy

investigation of (4.21) . Accuracy is found much improved.

V. 68
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Table 9 Accuracy of Approximation (4.21).

A z = 400, 2/CZ _ 9.89

n /cc 0-. P p Pp.

5 9.34 5.9 0.0225 0.0414 0.0410 0.0410 0.0

10 9.46 4.5 0.0634 0.1484 0.1456 0.1455 0.0
15 9.57 3.3 0.1088 0.2777 0.2709 0.27i39 0.0
20 9.67 2.3 0.1556 0.4063 0.3952 0.3952 0.0
25 9.76 1.3 0.2024 0.5229 0.5081 0.5081 0.0
30 9.84 0.5 0.2484 0.6230 0.6056 0.6056 0.0
35 9.92 -0.3 0.2931 0.7061 0.6873 0.6873 0.0
40 9.98 -1.0 0.3362 0.7733 0.7542 0.7542 0.0

B z = 100, Ob-2/oc= 4.47

n "=/ =  4 a P, p p P b A p%

4 4.31 3.6 0.0600 0.0905 0.0891 0.0891 0.0
8 4.41 1.4 0.1703 0.2947 0.2872 0.2872 0.0

12 4.48 -0.4 0.2828 0.4952 0.4809 0.4809 0.0
16 4.55 -1.8 0.3877 0.6558 0.6371 0.6371 0.0
20 4.61 -3.1 0.4817 0.7727 0.7529 0.7528 0.0
24 4.66 -4.1 0.5641 0.8534 0.8348 0.8347 0.0
28 4.70 -5.0 0.6352 0.9071 0.8910 0.8908 0.0
32 4.74 -5.8 0.6959 0.9419 0.9288 0.9286 0.0

C z 2 5, (a/.2  1.76

n r-l /KZ 4 a( bl PO pt

2 1.77 -0.6 0.0573 0.0660 0.0652 0.0652 0.0
4 1.82 -3.3 0.2131 0.2733 0.2663 0.2663 0.0
6 1.86 -5.4 0.3706 0.4822 0.4674 0.4673 0.0
8 1.90 -7.1 0.5076 0.6497 0.6299 0.6296 0.1

10 1.93 -8.6 0.6206 0.7710 0.7497 0.7493 0.1
12 1.95 -9.7 0.7107 0.8539 0.8339 0.8333 0.1
14 1.98 -10.8 0.7812 0.9085 0.8912 0.8906 0.1
16 1.99 -11.6 0.8356 0.9435 0.9295 0.9239 0.1
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The maximum absolute relative error Ac2 reduces to 12%, and
b

the relative loss in the salvo kill probability is, at most

only 0.07%. The middle curve in Figure 5 is the relative

error Au

'p*
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V. SALVO MODEL WITH NON GAUSSIAN DAMAGE FUNCTION

In this chapter we deal with a salvo kill model with

circular normal errors and circularly symmetric general

damage function. Under this general assumption, calculation

of the salvo kill probability is very difficult, and time-

consuming computation is needed for it. Here we propose an

approximate method for calculating the salvo kill proba-

bility. By this method computation is very easy and yet

fairly high accuracy is expected.

Assumptions in this chapter are as follows: A salvo of

n weapons is fired. The impact point error is composed of

two parts, the random bias common to all n weapons and the

round-to-round error. We adopt a Cartesian coordinate sys-

tem (x,y) the origin of which coincides with the center of

impact of the n weapons. The random position of the target

is denoted as (U,V) with respect to this coordinate system,

and (U,V) is assumed to be circular normal centered at (0,01

2
with variance a1:

1 201

fl(uv) = - e (5.1)
27ra 1

The impact points of the ith weapon (Xi,Yi) are independent

and identically distributed circular normal random variables
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2centered at (0,0) with variance a2:

2rr2a
.'-' ""f f (x,y) - e (5.2)

The conditional kill probability of the target by a single

weapon given that the target is at (u,v) and the weapon impact

point is (x,y) is called as the damage function D. In this

chapter, D is assumed to be a function of the miss distance

r = V(u-x)2 +(v-y)2 only.

2 2 2
D = D(r) , r = (u-xl + (v-y) . (5.3)

Further, the lethal area is denoted as A, and it is assumed

that there exist finite "moments" of all degree as defined

in (5.5),

mCO

27T D(r) r dr = A, (5.4)

E(r) = f r3 D(r) rdr < ,j = 1,2.... (5.51
.. 0

The conditional kill probability by a single weapon

given CU,VI being (u,v) is given by C1.11, repeated here as

p(u,v) = f f D(u-Xc,v-y)f2 (x,y) dxdy , (5.6)
-00 -40
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and the salvo kill probability (1.2) is renamed as (5.7).

P = 1 - f J {l-p(uv) } fl(u,v) dudv . (5.7)
5' a 4-Q0 -00

In the Simple Salvo Model in Chapter II with Gaussian

assumption on the damage function, we have a simple expres-

sion for p(u,v):

2 2(a2 +a2)

p(u,v) = 2& 2 e . (2.6)
(I + a2

In the general model here, p(u,v) given by (5.6) is a com-

plicated function in Vu2+v 2, and computation of the kill

probability is difficult. To overcome this difficulty,

we propose an approximate formula for p(u,v), and then

present a recursive method for computing the salvo kill

probability with this approximate p(u,v) function.

A. APPROXIMATE FORMULA FOR p(u,v)

In this section, an approximate formula for the condi-

I'- tional kill probability p(u,v) is presented. As a corollary,

we will get an approximation to the so-called Circular

Coverage Function.

Define the double Fourier transform of p(u,v) as

%e

~00 i(WlU+W2v)
p(lW 2 ) = f f e p(u,v) dudv , (.5.8)
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with similar notations being used for D(x,y) and f(x,y).

Then, from (5.6), we have

P(Wilrw1 = D(W 1 •a2 )f (W1 1W (5.9)

The Fourier transform of the circular normal density (5.2)

is

2
a02 2 2

(W1 + 2)
f 2 (Wi 2  e • (5.10)

4.5" 2 2

In the Fourier transform of the damage function, let the

exponential function be expanded and integrated term by term,

W 0 i (I1X+W2y)
D (Wiw 2 ) = . f e D (x,y) dxdy

- 0 CO fj jW 1x + ~ w2 y) D xy dx dy

= L

j= 0  -. -j j
..

,,

By symmetry, the odd terms are zero, so

'I.. (- 1 ) k =

-( A 1-l)01 2k
1"2 1= TNT TX f  f (W1x+W2y) D(x,y) dxdy

I - A 1 2rd'5. ~~~=0 (-1-..;=A =[ J' {f (wlc°S8+w2 sineS) kde}r k D r r r

t k=0 0 0
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Therefore,

(-I) (2k-1)(2k-3).--1 2k
r(WlIW /A I r___)(W____+W_2 ( 2k(2k-2)...2 ( ( +)

(5.11)

since

(2k-1)(2k-3).-..1 k 1

1 21r 2k 2k(2k-2) ... 2
f (W 1 cos e + W2 sin e) d1

'w* 0

a " ik = 0

The first few terms in (5.11) are

DI IW2)/A = I - Elr 2 ) (W1 +W 2) + ttE(r (w +W21
.'0

Now let us define

,2+2
' .. ~b 2 2 1- t 21

-. Da(w w2) bA{1 2(Wl+w 2 12 (5.121

and determine two constants b and c such that (5.11) and

(5.12) coincide up to the fourth power of w is. Then we

get

1 2 2 4(

V' E(r -r 2 (5.13)

and

'5

,.,,.,'.,,
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2c -b/2 + E(r )/4..-

If (5.10) and (5.13) are substituted in (5.9), the result is

-. 4,- .o

S 2 2 2

= - W 2 +W )}e 2 1 2  (5.14)

where

S2 = 2 b + E(r 2 )/2 (5.15)

with b given by (5.13).N. 4'

.-."..-.Next, the inverse transform of pa (lW 2) is calculated:

p (uv) = 1 0 j e pi+( 1 2)~wa (270) 2 C Ca 2 12

(5.16)

The inverse transform of the first term in (5.14)

Ae- (W 1 +W2)/2

is easily calculated as
~u 2+v2

~2~A 2S
2TV

The second term in (5.14) is
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J . e. 7 !

"'5'-. . . ,. , . . ,.,:' -"'.'-"-","-' . . . .'_' 'e ' .* '"- . '" ",'" - , - "" - . - "-. . . .

- ' i, I " , , N. .*- *..- '' : - -,',':,-,- . :, ,,:, ..



S2  2 2, S2 ( 2 2
Ab 2 2 22 b+2 ) d_ _{Ae 2 1 21

d(wl+we d(S-

and its inverse transform is given by

-u u2+v 
2

-b d A e 2S

d(S ),rS

Therefore we have

2

P-(uv) A b ( U - (5.17)
a27TS S 2S

It is noted that (5.17) is exact when the damage function

is Gaussian with parameter a; (5.17) coincides with the exact

formula (2.6) because in this case A = 27ra 2 , b = 0, and

s 2= ar 2+ a2.
m2

The cookie cutter damage function differs substantially

from the Gaussian, so consideration of the former provides

a good test of the robustness of (5.17). The cookie cutter

damage function is

$1 if 0=< r-a

D (r) = ( (5.18)

0 otherwise

&*.1
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The probability

- p(u,v) = f D(u-x,v-y)f 2 (x,y) dxdy
-'.5% - -

_ (x-u) 2 +(y 2

1 e dx dy

is called the Circular Coverage Function. In the literature,
i i'-

% .-. ,/u2 + 2

* .* the notation P(a/o2 ,r/a2 ) is used for it, where r =v

A standard method of calculating the Circular Coverage Func-

tion is the algorithm given by Brennan and Reed [Ref. 10]

based on an infinite series expansion, but if the accuracy

required is not too high, it is convenient to use closed form

approximations. Standard handbooks [Refs. 11,12] recommend

-the next formula for a/a 2 < 1.

2
r

PA (a/a2 ,r/a2) = e (5.191

= with

2 a 02 +a/4 (5.20)

"-According to (517), the Circular Coverage Function

"(x-r) +y

P(a/a2,r/a2) = f f I e 2 dxdy (5.21)2''/2 27 2 2
2 x 2+y2__<a 2
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can be approximated by

r2
2 2

Pa (a/ 2 r/ 2 ) = {i )e 25 (5.22)
25 S 2S

where

2 2 2 2-. ° b a a/4/53 S a2 +a (1 -lI/3)/4 ,(5.23)

since A ra 2 , E(r2) = a2/2, and E(r4) =a4/3 for the

cookie cutter damage function.

In Table 10, the Circular Coverage Functio P(R,d) is

tabulated for R = 0.1 (0.1) 2.0 and d = 0.0 (0.5) 2.5. In

Table 11, the error AA(R,d) = PA(R,dj - P(R,d) is shown.

For small R, the error is very small; for instance the error

is less than i 2 when R - 1.0. But when R is increased

beyond 1, the error grows rapidly.

In Table 12, the error A (R,d) = P a(R,d) - P(R,dl of

our approximate formula is given. The accuracy is found much

better than the above-mentioned formula. The absolute error

ford = 0 is less than 5×l0 - when R < 1.0, less than 102

even when R = 1.6 and usually shows much higher accuracy.

.). B. RECURRENCE FORMULA FOR THE SALVO KILL PROBABILITY

If the conditional kill probability p(u,v) by a single

weapon is given in the form (5.17), we can easily compute the

79
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Table 10 Circular Coverage Function P(R,d)

d

R 0.00 0.50 1.00 1.50 2.00 2.50

0.1 0.0050 0.0044 0.0030 0.0016 0.0007 0.0002
0.2 0.0198 0.0175 0.0121 0.0065 0.0027 0.0009
0.3 0.0440 0.0389 0.0270 0.0146 0.0062 0.0021
0.4 0.0769 0.0682 0.0476 0.0261 0.0112 0.0038
0.5 0.1175 0.1045 0.0735 0.0408 0.0179 0.0062

0.6 0.1647 0.1470 0.1043 0.0589 0.0264 0.0094
0.7 0.2173 0.1946 0.1397 0.0803 0.0369 0.0135
0.8 0.2739 0.2463 0.1790 0.1050 0.0495 0.0187
0.9 0.3330 0.3009 0.2217 0.1328 0.0645 0.0252
1.0 0.3935 0.3573 0.2671 0.1638 0.0819 0.0332

1.1 0.4539 0.4144 0.3146 0.1976 0.1019 0.0428
1.2 0.5132 0.4712 0.3635 0.2341 0.1247 0.0543
1.3 0.5704 0.5267 0.4132 0.2730 0.1501 0.0679
1.4 0.6247 0.5802 0.4628 0.3138 0.1784 0.0838
1.5 0.6753 0.6309 0.5120 0.3563 0.2092 0.1021

1.6 0.7220 0.6785 0.5599 0.3999 0.2426 0.1228
1.7 0.7643 0.7224 0.6062 0.4442 0.2784 0.1462
1.8 0.8021 0.7625 0.6504 0.4887 0.3161 0.1723
1.9 0.8355 0.7987 0.6921 0.5329 0.3556 0.2010
2.0 0.8647 0.8309 0.7310 0.5763 0.3965 0.2321

. ,'

'4
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Table 11 Error AA (R,d)

.. -

d

R 0.00 0.50 1.00 1.50 2.00 2.50

0.1 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.2 0.0000- 0.0000 0.0000 -0.0000 -0.0000 -0.0000

0.3 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000

0.4 0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000

0.5 0.0001 0.0001 0.0000 -0.0000 -0.0000 -0.0000

0.6 0.0004 0.0003 0.0000 -0.0001 -0.0001 -0.0000

0.7 0.0010 0.0007 0.0001 -0.0002 -0.0002 -0.0000

0.8 0.0020 0.0014 0.0003 -0.0004 -0.0003 -0.0001

0.9 0.0038 0.0027 0.0005 -0.0007 -0.0006 -0.0002

1.0 0.0065 0.0046 0.0010 -0.0012 -0.0011 -0.0003

1.1 0.0106 0.0076 0.0018 -0.0018 -0.0019 -0.0007

1.2 0.0162 0.0118 0.0030 -0.0026 -0.0030 -0.0011

1.3 0.0236 0.0174 0.0048 -0.0036 -0.0045 -0.0019

1.4 0.0330 0.0246 0.0074 -0.0047 -0.0065 -0.0030

1.5 0.0447 0.0337 0.0109 -0.0058 -0.0090 -0.0046

1.6 0.0585 0.0447 0.0155 -0.0068 -0.0121 -0.0067

1.7 0.0746 0.0578 0.0213 -0.0076 -0.0157 -0.0095

1.8 0.0929 0.0728 0.0286 -0.0080 -0.0197 -0.0131

1.9 0.1132 0.0898 0.0374 -0.0077 -0.0240 -0.0174

2.0 0.1353 0.1086 0.0478 -0.0065 -0.0286 -0.0225

.'-8
"'U.

*17
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Table 12 Error 4 (R, d)

d

R 0.00 0.50 1.00 1.50 2.00 2.50

0.1 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.2 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.3 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000

0.4 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000

0.5 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.6 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.7 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.8 -0.0001 -0.0000 0.0000 0.0000 0.0000 -0.0000

0.9 -0.0001 -0.0001 0.0000 0.0000 0.0000 -0.0000

1.0 -0.0003 -0.0002 0.0000 0.0001 0.0000 -0.0000

.1. 1 -0.0006 -0.0003 0.0000 0.0001 0.0000 -0.0000

% , 1.2 -0.0011 -0.0007 0.0000 0.0003 0.0001 -0.0000

1.3 -0.0019 -0.0012 0.0000 0.0005 0.0002 -0.0001

1.4 -0.0031 -0.0019 0.0000 0.0008 0.0003 -0.0001

1.5 -0.0049 -0.0031 -0.0000 0.0012 0.0006 -0.0001

1.6 -0.0075 -0.0048 -0.0001 0.0019 0.0009 -0.0002

1.7 -0.0110 -0.0072 -0.0003 0.0027 0.0015 -0.0002

1.8 -0.0157 -0.0104 -0.0007 0.0039 0.0023 -0.0002

1.9 -0.0218 -0.0146 -0.0012 0.0053 0.0034 -0.0001

2.0 -0.0294 -0.0199 -0.0021 0.0071 0.0049 0.0001

M". 8.2

*f £...
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salvo kill probability in a recursive way. We first observe

that the salvo kill probability

P = 1 - f I { -p(u,v)}nfl(u,v) dudv

,.4 where fl(u,v) is the circular normal density (5.1) and

r

r 2  2S 2 =  2 2p(u,v) (p + =) e r u +v (5.24)
2S

can be expressed as

'. .. P = 1 - K(n,O) (5.25)

where

K(n,O) = f CO - (P +at/p)e-t/p}n e - t dt , (5.26)
0

p..;

2 2
and where p = S /l"1 This is simply a matter of substitution

and the introduction of polar coordinates. We then have

Proposition 5.1

The function

K(n,j) f {1 - (p +$t/p)e-t ne(J/P+ltdt (5.271

" 83
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which has two integer arguments and three parameters p, p

and p satisfies the following recurrence relation:

K(n,j) =n K(n-l,j) + - (I-) n n$ K(n-l,j+l)
" -

(5 28)f+J~

n = 1,2, ... ; j = 0,1, ... (5.28)

with

K(0,j) P j 0,1, (5.29)
j+p

*_ Proof

From (5.27),

i (n,-j) f (V + at/p) e-t/p n-le-(j/p + l)t dt* ~K(n, j) = f 1(j8//0} e p1td

0
(p + ..-,et/ (j/p+l)

-- f - W + ( t/P)et/'P} n(l +8t/P)ePe-  t/dt0/

The first term in the right-hand-side is K(n-ij). The second

terms is, when integrated by parts,

Foci
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"f i- (p +at/p)e-t/p}n-l( $t/p)e-t/pe-(j/p+l)tdt

0"

= - n{l - ( 1 +S/pt/p/p}ne-(j/P+l)t

-{l - (j/p+l) f {- (vi+ t/p)e-t/p}ne (j/p+l)t dt

n1 0-tpn-t/pn -(j/p+)t d

f-U j{-(U i+at/p)et/l eej/+t dt
0

...- ,Z.

- (-) n 
- J+P K(n,j) - 8K(n-l,j+l)

n n

Therefore

K(nj) = K(n-lj) + P(1- - K(n,j) - $K(n-l,j+l)n n

from which (5.28) is immediate. From the definition of

K(O,j), it is clear that (5.29) holds.

Note 1

We use the notations U and p here in the same way as

in Chapter II without any subscripts because no confusion

is expected. Their definitions are different, but they are

just the counterparts of U and p defined in Chapter II.

Note 2

It is worthwhile to note that the recurrence relation

.; (5.28) has a similar form to (2.17). The p function (5.24)

85

,, ,r7o



0 ~ involves an extra parameter 13 which was missing in the Simple

Salvo Model in Chapter II, and therefore, it is necessary

to introduce another index j.

,4

5mi
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VI. COOKIE CUTTER SALVO MODEL

Consider that n weapons are fired at a target in a

salvo. The impact point error is composed of two parts,

the random bais and the dispersion. We adopt a Cartesian

coordinate system (x,y) the origin of which coincides with

the center of impact of the n weapons. The random position

of the target is denoted as (U,V) with respect to this

coordinate system, and (U,V) is assumed to be circular normal

2

centered at (0,0) with variance 01.

fl(uv) -e (6.1)

The impact points of the ith weapon (XiY i) are indepen-

dent and identically distributed circular normal random

variables centered at (0,0) with variance 02.0*

2 2

21 2f 2 xY)2- (6.2)

The kill probability by a single weapon conditional on

(U,V) - (u,v) and (X,Y) = (x,y) is a function of u-x and

v-y, D(u-x,v-y), and in this chapter it is assumed that
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iii~ 2+ (vy2 __ 2

1 if (u-x) + (v-y) a

D (u-x,v-y) = (6.3)

~with lethal area
(0 otherwise ,

S-.1 a

- "=..

In the following, we call this model the Cookie Cutter

Salvo Model.

The conditional probability that the target is destroyed

* by a single weapon given the random position of the target

being (u,v) is

p(u,v) = f f D(u-x,v-y)f 2 (x,y) dxdy
.-' -. -®

and with (6.2) and (6.3), we have

- .
'- (u-x) + (v- ) 2

1 . 20
p(uv) f ff e dxdy = P(a/o 2 u/+v 2 ),

2-ra 2 
2 +y2<a2

(6.4)L where P(R,d) is the Circular Coverage Function.

NO- The salvo kill probability*: *b.

P = 1f- f {l -p(u,v)}nf (u,v) dudv

88
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with (6.1) and (6.4) is readily rewritten as

o0

P 1 - / {1-P(a/a2 , -o/o 2) }ne-t dt . (6.5)

Ac

We carried out a number of computations of (6.5) with

*~ 5."- various sets of parameters a1, a2, c, and n by the Simpson

.5% method. A robust algorithm for computing the Circular

Coverage Function P(R,d) for wide ranges of R and d was needed.

For this purpose, we used the Brennan-Reed formula in a modi-
v-.,

fied form.

Brennan-Reed Formula:

P(R,d) = n gnkn

,. .: ~~ ~~ kn/_ 1 - (2n) ,n =12 .
nn= nn

_d 2/2

n- (R2 /2) n /2/n n= 1,2, ...

:.,. 89

1%'1= -. /
= ( /)e n!,n 12
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Modified Formula:

d _ 2 / 2 _ 2 / 2 n

P(R,d) = e (- h/2  n , (6.7)
n=O

hn/hn_ = d2/(2n) , n = 1,2,

h = 1,

n n Cn_ 1 + ann- n = 1,2, ... (6.8)

an/an 1 - R 2 /(2n) , n 1,2,

C = a0  = 1.

The modified formula is especially of use in preventing

underflow possible in cases with large R and d.

In their review paper, Eckler and Burr presented a short

table of the salvo kill probability of the Cookie Cutter

Salvo Model. But the accuracy is, as they admitted, sup-

posedly low because it is obtained by Monte Carlo simula-

tion. In Table 13, we give the correct values. The figures

in parentheses are from the table by Eckler and Burr.

In the following sections, comparison of the Cookie Cutter

Salvo Model and the Simple Salvo Model is dealt with and

then the optimal ballistic dispersion is investigated, where
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Table 13 Salvo Kill Probability : Kisi/(Eckler-Burr)

'i..
• 

,h / o-

Q0o'- 0.25 0.50 0.75

0.6 0.221 0.228 0.199
(0.224) (0.235) (0.201)

1.2 0.573 0.587 0.557
(0.574) (0.582) (0.563)

A n 2 1.8 0.834 0.836 0.813
2.4 (0.834) (0.832) (0.814)

024 0.954 0.952* 0.939
(0.949) (0.951) (0.942)

3.0 0.991 0.990 0.985
(0.990) (0.988) (0.985)

OhIOo,

0.50 0.75 1.00

0.4 0.231 0.213 0.177
(0.225) (0.214) (0.187)

0.8 0.525 0.551 0.514
(0.521) (0.551) (0.516)

B n = 5 1.2 0.736 0.772 0.764
(0.728) (0.773) (0.763)

1.6 0.872 0.894 0.896
(0.865) (0.892) (0.893)

2.0 0.946 0.957 0.958
(0.945) (0.956) (0.957)

.

.%

4/1a 0.50 0.75 1.00 1.50

0.2 0.221 0.210 0.176 0.115

(0.209) (0.201) (0.176) (0.113)

0.4 0.458 0.525 0.504 0.381
(0.447) (0.531) (0.499) (0.386)

0.6 0.605 9.713 0.740 0.648
(0.595) (0.716) (0.740) (0.640)

C n - 20 0.8 0.715 0.818 0.861 0.828
(0.706) (0.817) (0.846) (0.828)

1.0 0.801 0.884 0.922 0.923
(0.792) (0.882) (0.924) (0.924)

, 1.2 0.865 0.928 0.956 0.966
(0.856) (0.926) (0.958) (0.970)

1.4 0.912 0.956 0.975 0.985
(0.900) (0.953) (0.975) (0.984)

91

K . 9

;N* . ; % 1 : &; . .V. . .. ...' .*. .. ...'.,..- ,.. .-,*.,...' -



the approximate formula presented in Chapter III and the

approximate method of computing the salvo kill probability

developed in Chapter V are found to be useful.

A. COOKIE CUTTER VS. SIMPLE SALVO MODEL

The Cookie Cutter Salvo Model differs from the Simple

Salvo Model of Chapter II only in the damage function. In

Chapter II, we assumed

2 .,.(u-x) 2 + (v- ) 2

D(u-x,v-y) - e

2with lethal area 2ra . For comparison's sake, the lethal

area of the two salvo models are now set equal

2° 2"?- .'-I" a

-' 2 2a 2  (6.9)

The two models share the common parameters ai, a2, a, and n,

only being different with respect to the shape of the damage

function. The quantities associated with the Cookie Cutter

Salvo Model will be given suffix c in the following when

necessary.

It is interesting to compare the salvo kill probabilities

4of the two models. We begin with three extreme cases in which

the salvo kill probability has closed form expressions.
.'

(1) The case n = 1.

The formula (6.5) with (6.4) is easily integrated and

give
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2 2 2*~~ - (a / +a)
P = l-e (6.10)

The corresponding single shot kill probability under the

assumption of the Gaussian damage function is

P= 2 2 2 (6.11)
l+2/(a +a2)

Proposition 6.1

The Cookie Cutter Salvo Model with n = 1 gives a higher

single shot kill probability than that of the Simple Salvo

Model.

P > P. (6.12)

Proof

-x 2 2 2Recall that e < i/(l+x) for x > 0. Let a /( i+2) x

in (6.10) and (6.11), then (6.12) is obvious. 0

Generally, in the salvo with n > 1, this inequality

does not necessarily hold as will be shown in the following.
4.s

-. ' (2) The case = 0

Let a1 0 in (6.5), then we have

2 2
-na /2

P = 1 - e . (6.13)
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The corresponding formula in the Simple Salvo Model is given

by(2.23), namely

"1%1""(1 +c 2/ 2 . (6.14)

(3) The case a2 = 0

Let a2 0 in (6.4). We get

2 2
Pc = 1 -e 1 (6.15)

" .' The corresponding formula in the Simple Salvo Model is given

. by (2.24):

"- 1- n(n-l)-•-1
(n+X) (n-l+X) -.. (l+X) (6.16)

with

2 2

Proposition 6.2

Between the salvo kill probabilities of the Cookie

Cutter Salvo Model and the Simple Salvo Model with the same

parameters, the following relationships hold:

If 01 0, then

P Pc > P. (6.17)

_-<.'. 94f ".'
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If a2 = 0, then

P P iff 2/a2 < 1/A0 X (6.18)

where X0 is a positive solution to the equation

n
X - I ln(l + X/j) = 0 . (6.19)

v' 4 - 4 j=1

4Proof

The proof of (6.17) is just the same as that of Proposi-

tion 6.1. As to the second assertion, let

SP = 1 - g (x )

in (6.16). Then

* n n
g(X) = l ln(l + X/j) , dg/dA = i/(j+A)

j =l j =l

. Since g(0) = 0, dg/dlI > 1, d g/d < 0, we have
X=O

""I A iff A < A0

where X0 is given by (6.19). The relation (6.18) is

immediate.
@-.1

95
..S.;,,. 9 5



AID-Ri46 475 OPTIMIZATION OF ARTIFICIAL DISPERSION IN SRLYO FIRING 2/2
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA T KISI
DEC 83

UNCLASSIFIED F/G i9/4 NL

moiEEEmoEEoiE
oIIfflll



7M 77- .
-. 

.1 ,. .

-

1111 1.8&

MICROCOPY RESOLUTION TEST CHART
NiATIONAL. BUREAUj OF STANDARDS- 1963-A



* * a . . . . . . 4 * * "* " . . .. 4. . . .. 4 4

.477

As to the general case, we must compare the two kill

probabilities numerically. To illustrate the general idea,
Table 14 is given. In Table 14A, Pc for n = 4 is tabulated,

and the corresponding Simple Salvo Model kill probability

P is in Table 14B. It is observed that Pc s in the column
c

a2/a = 0 are larger than P's as stated in Proposition 6.2.
P Is in the first row corresponding to a2/a = 0 is smaller

2 2
than P's except for the case a2 = 0, since 1/A 0 = 0.216

for n = 4.

As a general tendency, P cis larger than P when a 2is

relatively larger than a1 . Pc is smaller than P when a2

is considerably smaller than al, as is seen in the upper

right corner of the table.

B. OPTIMAL BALLISTIC DISPERSION

We carried out a golden search calculation to get the

optimal ratio 2 2 for a number of cases with different

2 2
combinations of n and a 1/a2 . The results are tbltdi

Table 15. Table 15A gives the optimal a2c/ 2 of the Cookie

Cutter Salvo Model, and Table 15B gives the associated

salvo kill probability, namely the maximum salvo kill proba-

2 2
bility for a given set of n and a /a2 . It is noted that this

calculation is very time-consuming. The corresponding

values for the Simple Salvo Model are tabulated in Table 16.

I. eBefore starting comparison of the optimal ballistic

V' dispersion of the Cookie Cutter Salvo Model with that of the
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.°..'... - - ... .4. ... '.-. •.-..-..- . ....-.....4-.... .• .- - -- .: . -- .



Table 14 Salvo Kill Probability, n = 4

A Cookie Cutter Salvo Model, Pc.

4,0.0 2.0 4.0 6.0 8.0 10.0

0.0 1.000 0.393 0.221 0.154 0.118 0.095
0.5 1.000 0.605 0.389 0.285 0.224 0.185
1.0 0.982 0.626 0.425 0.320 0.256 0.214
1.5 0.931 0.615 0.435 0.335 0.272 0.229
2.0 0.865 0.592 0.432 0.339 0.279 0.237
2.5 0.798 0.565 0.423 0.337 0.281 0.240
3.0 0.736 0.538 0.412 0.333 0.279 0.241
3.5 0.681 0.511 0.399 0.326 0.276 0.240
4.0 0.632 0.486 0.385 0.319 0.272 0.238

.

7 :B Simple Salvo Model, P.

0.0 2.0 4.0 6.0 8.0 10.0

0.0 1.000 0.594 0.382 0.280 0.221 0.183
0.5 0.988 0.621 0.421 0.317 0.253 0.211
1.0 0.938 0.613 0.431 0.331 0.268 0.225
1.5 0.870 0.589 0.427 0.334 0.274 0.232
2.0 0.802 0.560 0.417 0.331 0.274 0.233
2.5 0.740 0.531 0.404 0.325 0.271 0.233
3.0 0.684 0.503 0.390 0.317 0.267 0.230
3.5 0.634 0.476 0.375 0.309 0.262 0.227
4.0 0.590 0.452 0.361 0.300 0.256 0.223
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Table 15 Optimal Ballistic Dispersion and

Maximum Probability ( Cookie Cutter Salvo Model )

A Optimal Ratio o-( / z

, /(A 2 4 8 16 32 64

2 0.4 1.0 1.7 2.7 4.1 6.1
4 0.8 1.6 2.6 3.9 5.8 8.6
6 1.2 2.1 3.2 4.9 7.1 10.5
8 1.6 2.5 3.8 5.6 8.3 12.0
10 1.8 2.9 4.4 6.4 9.3 13.4
12 2.1 3.3 4.9 7.0 10.1 14.7

B Maximum Salvo Kill Probability

a;. A& 2 4 8 16 32 64

2 0.476 0.626 0.782 0.905 0.973 0.996
4 0.300 0.435 0.601 0.769 0.899 0.971
6 0.224 0.339 0.492 0.667 0.826 0.935
8 0.182 0.281 0.420 0.590 0.762 0.897
10 0.154 0.241 0.368 0.531 0.708 L.859
12 0.135 0.213 0.329 0.484 0.661 C.823
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Table 16 Optimal Ballistic Dispersion and

Maxmum Probability ( Simple Salvo Model )

A Optimal Ratio n " ic.

To 2 4 8 16 32 64

2 0.5 0.6 1.3 2.2 3.6 5.6
4 0.5 1.1 2.0 3.4 5.3 8.1
6 0.5 1.4 2.6 4.3 6.6 10.0
8 0.7 1.8 3.1 5.0 7.7 11.5

10 0.9 2.1 3.6 5.7 8.7 12.9
12 1.0 2.3 4.0 6.3 9.5 14.1

B Maximum Salvo Kill Probability

P AI,.,x

C, 1 2 4 8 16 32 64

2 0.450 0.622 0.780 0.904 0.973 0.996
4 0.293 0.431 0.599 0.768 0.899 0.971
6 0.217 0.334 0.489 0.665 0.826 0.935
8 0.173 0.274 0.416 0.588 0.761 0.896

10 0.144 0.233 0.363 0.528 0.707 0.858
12 0.124 0.204 0.323 0.481 0.659 0.823

99

'. ..'/, " "-:.:,..'r°.."..'• .".-.D''.:.:,;. '.''. '.c.;,,..,..". .,''.. .. ::'. - .... ... .. ..-.... • .-%



Simple Salvo Model, we recall the approximate formula (3.22)

given in Chapter III.

2 f f x2 
-xY

a {p*(x,y) x,y)dxdy,0 (6.20

In the case of the Cookie Cutter Salvo Model,

f f x2 D(xy) dxdy = a /2

.* whereas in the Simple Salvo Model,

/ f x 2 D(xy) mdy -

Therefore, (6.20) states that the optimal ballistic dispersion

of the Cookie Cutter Salvo Model is larger than that of the

2Simple Salvo Model approximately by a /2:

2 a2  2  2a /a a =/ 0.5 .(6.21)

*.*

Now we subtract entities in Table 16A from those in Table

15A and get the difference a / a 2 which is tabulated in

, - Table 17A. The values are positive with only one exception,

and the predicted value 0.5 is observed in the upper right

100



4 Table 17 Comparison of Cookie Cutter Salvo Model

and Simple Salvo Model

A Difference of Optimal Ratio (rac /0 (2 _- 00.

2 4 8 16 32 64

2 -0.1 0.4 0.4 0.5 0.5 0.5
4 0.3 0.5 0.6 0.5 0.5 0.5
6 0.7 0.7 0.6 0.6 0.5 0.5
a 0.9 0.7 0.7 0.6 0.6 0.5

10 0.9 0.8 0.8 0.7 0.6 0.5
12 1.1 1.0 0.9 0.7 0.6 0.6

-p,

B Difference of Maximum P's

2 4 8 16 32 64

, 2 0.026 0.004 0.002 0.001 0.000 0.000
'. 4 0.007 0.004 0.002 0.001 0.000 0.000

6 0.007 0.005 0.003 0.002 0.000 0.001
8 0.009 0.007 0.004 0.002 0.001 0.001

10 0.010 0.008 0.005 0.003 0.001 0.001
12 0.011 0.009 0.006 0.003 0.002 0.001
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corner of the table. In the below left corner of the table,

the figures are not close to the value 0.5, but these cases

correspond to low salvo kill probability.

In Table 17B, the difference of the maximum probabilities

of each model is tabulated. The figures are all positive,

and lead to the speculation that Pc max > m in all cases

- despite the fact that Pc may be smaller than P when a2 is

not chosen optimally. The author has not yet succeeded in

obtaining a proof of this speculation, but it might be the

counterpart for n > 1 of Proposition 6.1 for n = 1.

In Chapter V, we developed an approximate method of

computing the salvo kill probability which can be applied

to the Cookie Cutter Salvo Model. The salvo kill proba-

bility is given by

P = 1 - K(n,0) , (5.25)

where

K(n,j) = f0(1 - (P + Bt/p)ee-t/ p } n e j / p+llt dt (.5.271
0

satisfies the recurrence relation,

K ~ ~ ) = n -- - -)nj p n K
K(nj) K(n-l,j) + - (n-l,j+1 , (5.28)

n~j~pn~j~pN+j+p

n = 1,2, ... ; j = 0,1,..
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"5.. with

oP., , . ...

K(0,j) = + F j =1,2, . .. (5.29)

., The parameters are given by (5.22), (5.23), and (5.24).

=(a /S ) (1 a 2 V-/S),4 4o

S= a4/2/3 S 4  (6.22)

S2 2 +a2s =a +a(l1/ ll)/2 .

Using these formulae together with the golden section

search calculation, we obtained Table 18. Table 18A gives

the approximate optimal ballistic dispersion of the Cookie

Cutter Salvo Model, and the associated salvo kill probability

is in Table 18B.
-- 2 2
In Table 19A, the difference between the optimal a2 

/az

2 2
given in Table 15A and the approximate 2A/ in Table 18A

is tabulated. The difference decreases towards the upper

right corner of the table.

In Table 19B, the salvo kill probability of the Cookie

Cutter Salvo Model associated with the approximately optimal

ballistic dispersion mentioned above is given. It corres-

ponds to the maximum P given in Table 15B. In spite of the

2 2",,discrepancies observed in Table 19A, the approximate a 2A/c'

gives almost the same kill probability as the true a2c/a 2 gives.
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Table 18 Optimal Ballistic Dispersion

and the Associated Salvo Kill Probability

( Cookie Cutter Salvo Model, Approximation

A Optimal Ratio 6iA2 /c0'.

2 4 8 16 32 64

2 0.5 1.0 1.7 2.7 4.1 6.1
4 0.7 1.5 2.5 3.9 5.8 8.6
6 1.0 1.9 3.1 4.8 7.1 10.5
8 1.2 2.2 3.6 5.5 8.2 12.0

10 1.3 2.5 4.1 6.2 9.2 13.4
12 1.5 2.8 4.5 6.8 10.0 14.7

B Maximum Salvo Kill Probability

AP

(ri o.(a 2 4 8 16 32 64

2 0.475 0.625 0.782 0.905 0.973 0.996
4 0.297 0.432 0.600 0.768 0.899 0.971
6 0.218 0.334 0.490 0.665 0.826 0.935
8 0.173 0.274 0.416 0.588 0.762 0.896

10 0.144 0.234 0.363 0.528 0.707 0.358
12 0.124 0.204 0.323 0.481 0.659 0.923
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Table 19 Accuracy of the Approximation

( Cookie Cutter Salvo Model )

A Error in the Optimal Ratio, a-, / _( a' A .

n

o;/2 2 4 8 16 32 64

2 -0.1 0.0 0.0 0.0 0.0 0.0
4 0.1 0.1 0.1 0.0 0.0 0.0
6 0.2 0.2 0.1 0.1 0.0 0.0
8 0.4 0.3 0.2 0.1 0.1 0.0

10 0.5 0.4 o.3 0.2 0.1 0.0
12 0.6 0.5 0.4 0.2 0.1 0.0

B Salvo Kill Probability Associated with

the Approximately Optimal Ballistic Dispersion.

*" I/CA 2 4 8 16 32 E4

2 0.475 0.626 0.782 0.905 0.973 0.996

4 0.300 0.435 0.601 0.769 0.899 0.971
6 0.223 0.339 0.492 0.667 0.826 0.935

8 0.181 0.280 0.420 0.590 0.762 0.897
10 0.153 0.241 0.368 0.531 0.708 0.859
12 0.134 0.212 0.328 0.484 0.661 0.823

105



-. ~~~~~F P- 7. * -....

."'" VII. SALVO MODELS WITHOUT CIRCULAR SYMMETRY

The approximate formula for the optimal ballistic dis-

persion presented in Chapter III covers the salvo models

without circular symmetry. In this chapter the formulae

for computing the salvo kill probability of these models

are dealt with.

Suppose that a salvo of n weapons is fired against a

target. The impact point error is composed of two parts,

one being common to all the weapons, and another being

round-to-round dispersion. The random target position (U,V)

with respect to the coordinate system (x,y) is assumed to

be elliptical normal centered at (0,0) with variances

a2 and a2 respectively.
iu uv

22
- u - v

22 22
f (u1v) e . (7.1)

The impact points of the ith weapon (Xi,Y.) are indepen-

dent and identically distributed elliptical normal random

2 2
variables centered at (0,0) with variances ax and ay,

respectively.

2m 2

f x1a 2a
f" 2

( y = 2T aa e y (7.2)
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The kill probability D by a single weapon conditional on the

target being at (u,v) and the weapon impact point being (x,y)

is a function of u-x and v-y only, and is given by the

.- elliptical Gaussian function with parameters x and y.

Specifically,

2 2
,.(u-x) (v-y)

2a 2  2a 2

D(u-x,v-y) = e x y (7.3)

It might be an appropriate model, e.g., for a ground target

vs. a weapon impacting the ground obliquely, because in this

-* case the scattering of the fragments and thus the conditional

kill probability D is by no means circular symmetric as

assumed in the previous chapters. For brevity, we call

this model the Elliptical Normal Salvo Model.

The kill probability of a single weapon conditional on

(U,V) being (u,v) is given by

.. ,.-

p(u,v) = f f D(u-x,v-y)f 2 (x,y) dxdy
-00 -00

and using (7.2) and (7.3) we get

u v2

a 2 2 +a2 2(c 2,
Pp(u,v) = ax x x y y(74)

J/2+2) (a2 c2
X x y y
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The salvo kill probability is then given by

2 -2

P =1 f {1-p(u,v)1'n e dd (75)
2 uv - -

From this equation, Grubbs derived the following formula:

Proposition 7.1 (Grubbs)

The kill probability of the Elliptical Normal Salvo

Model stated above is given by

•~ =.

Sj=l 
x (+y) (7.6)

where

a= x /(a2 +a2)(a2 + a2
xy x x y y

(7.7)

x (a 2 +a2 Ua2 01 = (a2 +a2 1a2
x x ) y y y V

The Grubbs formula is not suited for calculation when n

is large, since it is an alternating series. To overcome this

difficulty, Breaux and Mohler [Ref. 13] gave a method for calcu-

lating the kill probability based on an expansion of (l-z)n

in Jacobi polynomials rather than as a binomial series. The

series is found to converge to the true value with less than

n terms, which is very attractive for the calculation of

salvo kill probability with a large n.
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The author has tried to find alternative ways of calcu-

lating the salvo kill probability which are effective even

for the cases with large n's, but at present, the obtained

results are not promising. The following propositions are

given not as efficient algorithms for calculating the salvo

kill probability, but as possible hints for developing more

efficient ways of calculation.

For the Elliptical Normal Salvo Model, we have a

proposition similar to Proposition 2.5. We omit the proof,

since it closely parallels that of Proposition 2.5.

Proposition 7.2

The salvo miss probability Q(n) of the Elliptical Normal

Salvo Model characterized by (7.1), (7.2), and (-7.3) with

the weapon number n,

22 2 2
2 -p s-p t' '>"~~~ -2t2 ne-xS O

Q(n) f f ( pe-s e y ds dt (7.8)

satisfies the relationship

n n-k kQln) -() (i-1 U (7.9)
k=O

where

22 2 22-k2 fn /C n-p xs -Pyt
q(k)- f f a e t ) y dsdt . (7.10)
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In the case of Simple Salvo Model, q(k) had a simple

recurrence relationship, but we have not succeeded in

finding such a relationship in this case.

Corresponding to the recurrence formula for the salvo

kill probability presented in Chapter II, we have the next

propositions: The series given in Proposition 7.3 is an

infinite series, but for a small 6/p it will converge rapidly.

Proposition 7.3

The salvo miss probability of the Elliptical Normal

Salvo Model with n weapons is given by

(n" (2k) ! 2k

-Q=n k/2 (6/P) Jn,2k) (7.11)
k=0 2 (k!)

where

J (n,k) = n e-t dt
0

with

2 2 2 2
1x+x + a+

au Crv

(7.121

cL2 + -x2 O 2 + 2
V =

110
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and

ii= Xy

-. 2 2-~ 2
V/(a +a(a+

V",. x x y y

Proof

In (7.8), let s r cose, t = r sin6, and (p +p/2

(x-Py)/2 = S. Then

,, '.,~,x

and therefore Q(n) is

%a d

-P.0 2 2 2w _6r 2 cos2d
Q(n) = fo )nepr f e der dr

2 (-(1 e - r 2 )nprI (6r 2 ) r dr

where 10 (z) is the modified Bessel function of the first

kind with order 0, and has an expansion formula

10(z = kO (1~ 2 z 2k (.3-0 k-O kI

Thus
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(n) / --- p -t/p n -t

e 0Ce1 t dt

* o',IJ

00 (2k)! 2k 1 tp n 2k.-. :':""P P. k 2k, 2 (6/ 0)  MTT (1 - Ue-t ~e-tt.t

xYk=O 2 (kI) 0

.5 0

Proposition 7.4

The integral J(n,k) which has two integer arguments and

two positive parameters p. and p,

J(n,k) - f -pe-t/p )n -t t k dt (7.14)
0

* .- satisfies the following recurrence relation.

J(n,k) n n J(n-l,k) + P J(n,k-1) , (7.15)n-Ip n+p

n = 1,2, ... ; k = 1,2,

J(n,0) = +---J(n-1,0) + P (l_ , n - 1,2, (7.161n+p fl+p

J(Ok) " 1 k = 1,2, (7.17)
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Proof

' 1 : e-t/p n-i

J(n,k) = 1  (1 -lV ) etk dt
0

(1 - Ue-t/p n-i -t/p-t t k dt

0

The first term in the right-hand-side is J(n-l,k). If

the second term is integrated by parts, then

J(n,k) = J(n-l,k) 1T. R (l- e-t/p )n-t tk
n0

1 n f (l- e-t/p )n e-t t k dt

Therefore, for k # 0, we have

J(n,k) = (n-1,k) + k J (n, k-1) - P. J(n, k)

From this relation (7.15) is immediate. If k = 0,

J (n,O0) 1 J(n-i, 0) + R (1l) -)j AJ (n, 0)

and therefore, (7.16) results. The relation (7.17) is obvious.

0
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It is noted that all the terms in the expansion (7.11)

are positive, and that the integral J(n,O) is the salvo miss

probability of the Simple Salvo Model dealt with in Chapter

II. Therefore we have

Corollary 7.5

A lower bound to the salvo miss probability of the

Elliptic Normal Salvo Model characterized by (7.1), (7.2)

and (7.3) with weapon number n is given by

QE(n) = - 6/p Q(n) , (7.18)

where Q(n) is the miss probability of the Simple Salvo Model

by n weapons with

= 2 +2 2a 2

i ~+ 
aL a +

P( ~2 20yu v

6x = c~ 2  a2 +a2

x y

u v

CL x y

I/c2 + 2)(a2 + 2
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